11.10.2013 Views

Conference, Proceedings

Conference, Proceedings

Conference, Proceedings

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

comparison of results we can determine the suitability of studied laminating foil for the<br />

photovoltaic panel application.<br />

2. Models<br />

Classical and fractal approach<br />

Ideal planar Dirac pulse model [1], [3]<br />

The dependence of the temperature change on time for a simple model after a Dirac pulse of<br />

heat supply prom surface heat source can be derived with using of the term [1]<br />

⎟ 2<br />

Q ⎛ h ⎞<br />

ΔT<br />

( t)<br />

=<br />

exp ⎜<br />

⎜−<br />

, (1)<br />

c 4 at<br />

⎝ 4at<br />

pρ<br />

π<br />

⎠<br />

where Q = PΔt<br />

means total pulse heat energy (P is a power of heat source, Δt width of the<br />

pulse), cp is specific heat, a is thermal diffusivity and t is time.<br />

Ideal planar Step wise model [1], [3]<br />

The thermal response for this model can be derived by integration of Eq. (1), assuming that the<br />

heat power P is constant. The dependence of temperature change on the time can be for planar<br />

heat source in this case described by<br />

t<br />

2<br />

P<br />

h<br />

ΔT<br />

( t)<br />

∫ exp dt<br />

0 c 4 at 4a<br />

t ⎟<br />

p<br />

⎟<br />

⎛ ⎞<br />

=<br />

⎜<br />

⎜−<br />

. (2)<br />

ρ π ⎝ ⎠<br />

By a simple deriving (integrating per partes) we can get<br />

or<br />

or<br />

ΔT<br />

( t)<br />

2P<br />

c ρ 4π<br />

a<br />

⎡<br />

⎢<br />

⎣<br />

2 2<br />

⎛ h ⎞ h<br />

t exp ⎜<br />

⎜−<br />

⎟ +<br />

⎝ 4at<br />

⎠ 4a<br />

= ∫ −<br />

t<br />

3 2<br />

p<br />

P 4at<br />

⎡ ⎛ h ⎞ h ⎛ 1 h ⎞⎤<br />

P 4at<br />

ΔT ( t)<br />

⎢exp<br />

Γ ,<br />

iΦ<br />

2λ<br />

π<br />

⎜−<br />

⎥ =<br />

4a<br />

t ⎟ −<br />

⎣ ⎝ ⎠ 4at<br />

⎝ 2 4at<br />

⎠⎦<br />

2λ<br />

0<br />

t<br />

2 ⎛ h ⎞ ⎤<br />

exp ⎜<br />

⎜−<br />

⎟ d t⎥<br />

, (3)<br />

⎝ 4at<br />

⎠ ⎦<br />

2<br />

2<br />

= ⎜ ⎟ ⎜ ⎟<br />

*<br />

, (4)<br />

P 4at<br />

⎡ 1 ⎛ h ⎞ h ⎛ h ⎞⎤<br />

P 4at<br />

ΔT ( t)<br />

⎢<br />

Φ<br />

2λ<br />

π<br />

⎜−<br />

⎥ =<br />

4a<br />

t ⎟<br />

⎢⎣<br />

4at<br />

⎜ 4at<br />

⎟<br />

⎝ ⎠ ⎝ ⎠⎥⎦<br />

2λ<br />

2<br />

*<br />

= exp⎜<br />

⎟ − erfc⎜<br />

⎟ i , (5)<br />

respectivelly. At this equation, the λ = cpρ a is the thermal conductivity, erfc(x) is<br />

complementary error function (also called the Gauss error function, see Appendix). It is defined<br />

as<br />

erfc(<br />

Γ ( 1 2,<br />

x )<br />

∫ ∞<br />

2<br />

2<br />

−x<br />

x) = = e d<br />

π π x<br />

2<br />

x<br />

x<br />

e 2<br />

−<br />

∗<br />

and i = − x erfc(<br />

x)<br />

t<br />

Φ , (6)<br />

π<br />

1 2 −3<br />

2 −A<br />

t<br />

where x = h 4at<br />

and Γ ( 1 2,<br />

A t)<br />

= A ∫t<br />

e dt<br />

is the upper incomplete gamma function.<br />

0<br />

201

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!