11.10.2013 Views

Conference, Proceedings

Conference, Proceedings

Conference, Proceedings

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

specimen and heat source R at infinite length l. The model parameters are of the same meaning<br />

like in an ideal model.<br />

This model will be derived in a more detailed way. The dependence of temperature on radius<br />

for the thermal field can be written as ([7], [8])<br />

D−E<br />

+ 2<br />

hc<br />

K r<br />

Δ T ( r)<br />

= −<br />

, (14)<br />

k D(<br />

D − E + 2)<br />

B<br />

where kB is Boltzmann constant, h = h 2π<br />

is modified Planck constant, c is speed of heat<br />

propagation and K, D are fractal measure and fractal dimension, respectively. If the vector r in<br />

2 2 2<br />

2 2 2 2<br />

2 2<br />

the Eq. (14) is expressed like r = rT<br />

− c ( t − t0<br />

) = rT<br />

− c t + 4a0t<br />

− c t0<br />

, where t0 is the time<br />

2<br />

response delay, a 0 = c t0<br />

2 is maximum value of thermal diffusivity (for E = D) and rT is a radius<br />

of fractal space, it is possible (alike by decomposition of the density) to rewrite it to the relation<br />

( D−E<br />

+ 2)<br />

/ 2<br />

( D−E<br />

+ 2)<br />

/ 2 2 2 2 2<br />

Khc<br />

( 4a0t)<br />

⎛ c t0<br />

− r ⎞<br />

T c t<br />

Δ T ( t)<br />

= −<br />

1<br />

B ( 2)<br />

⎜<br />

⎜−<br />

− +<br />

4 0 4 ⎟ . (15)<br />

k D D − E − a t a0<br />

⎝<br />

2 2 2 2<br />

If h = c t0<br />

− rT<br />

is corrected thickness of specimen and the terms in parenthesis can be viewed as<br />

− x<br />

significant in the expansion of exponential function ( 1 − x ≈ e ), we can write<br />

( D−E+<br />

2)<br />

/ 2 ⎡<br />

2 2<br />

Khc<br />

( 4a<br />

− + ⎛ ⎞⎤<br />

0t)<br />

D E 2 h c t<br />

Δ T ( t)<br />

= −<br />

exp⎢−<br />

⎜ +<br />

⎟<br />

⎟⎥<br />

(16)<br />

kB<br />

D(<br />

E − D − 2)<br />

⎢⎣<br />

2 ⎝ 4a0t<br />

4a0<br />

⎠⎥⎦<br />

If we substitute a = 2a0 /( D − E + 2)<br />

for the thermal diffusivity and R = 4a<br />

/ c for the effective<br />

radius of sample (heat source), where a is the coefficient of thermal diffusivity of the body with<br />

fractal dimension D, we obtain<br />

(<br />

[ ( D − E + 2)<br />

2]<br />

D−E<br />

) / 2<br />

2<br />

Khc<br />

( D−E+<br />

2)<br />

2 ⎡ ⎛ h 4at<br />

⎞⎤<br />

Δ T ( t)<br />

=<br />

( 4at)<br />

exp⎢−<br />

⎜ + ⎟ 2 ⎥ . (17)<br />

kB<br />

2D<br />

⎣ ⎝ 4at<br />

R ⎠⎦<br />

The power of heat source hold out to thermal conductivity of real material (characterised by<br />

fractal dimension D) can be written as<br />

P Khc<br />

⎛ D − E + 2 ⎞<br />

= ⎜ ⎟<br />

λ k D ⎝ 2π<br />

⎠<br />

B<br />

( D−E<br />

) / 2<br />

Than we can rewrite Eq. (17) to form<br />

Δ<br />

P ( 4at)<br />

2λ<br />

π<br />

( D−E+<br />

2)<br />

/ 2<br />

T ( t)<br />

= ( E−D<br />

) / 2<br />

⎠<br />

. (18)<br />

2 ⎡ ⎛ h 4at<br />

⎞⎤<br />

exp⎢−<br />

⎜ + ⎟ 2 ⎥ . (19)<br />

⎣ ⎝ 4at<br />

R ⎠⎦<br />

This equation is for R → ∞ (real radius of the specimen and heat source R at infinite length l) is<br />

identical with model at Eq. (12). For E = 3 (3D space) and D = 2 (surface heat source at Eq. (13)<br />

ΔT<br />

( t)<br />

P<br />

2λ<br />

2<br />

4at<br />

⎡ ⎛ h 4at<br />

⎞⎤<br />

exp⎢−<br />

⎜ + ⎟<br />

⎟⎥<br />

. (20)<br />

π ⎣ ⎝ 4at<br />

R ⎠⎦<br />

= 2<br />

203

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!