11.10.2013 Views

Conference, Proceedings

Conference, Proceedings

Conference, Proceedings

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Ideal fractal Dirac pulse model [8]<br />

The model which was defined by Eq. (1) can be generalized for heat propagation from any<br />

source type: point (D = 0), linear (D = 1), planar (D = 2) – generally “fractal” with dimension<br />

D ∈ 0,<br />

E ) in one, two, three, generally in E‐dimensional space [8]<br />

202<br />

Δ<br />

Q<br />

T ( t)<br />

= ( E −D<br />

) / 2<br />

cpρ<br />

( 4π<br />

at)<br />

Ideal fractal step wise model<br />

⎟ 2 ⎛ h ⎞<br />

exp ⎜<br />

⎜−<br />

. (7)<br />

⎝ 4at<br />

⎠<br />

The thermal response can then be derived by integration of Eq. (7) for this model on assumption<br />

that the heat power P is constant. The dependence of temperature change on the time can be for<br />

fractal heat source in this case described by<br />

ΔT<br />

( t)<br />

t<br />

2<br />

P<br />

h<br />

∫ exp dt<br />

( E D)<br />

2<br />

0 cp<br />

( 4 at)<br />

4at<br />

⎟ ⎛ ⎞<br />

⎜<br />

⎜−<br />

. (8)<br />

ρ π<br />

⎝ ⎠<br />

= −<br />

By simple deriving (integrating per partes) we can get for s = ( E − D)<br />

2<br />

2 2 t<br />

P ⎡ 1−s<br />

⎛ h ⎞ h<br />

ΔT<br />

( t)<br />

= ⎢t<br />

exp⎜<br />

− ⎟ +<br />

−<br />

∫t<br />

s<br />

cpρ<br />

( 1 s)<br />

( 4π<br />

a)<br />

⎣ ⎝ 4at<br />

⎠ 4a<br />

0<br />

−(<br />

s+<br />

1)<br />

which special case is for s = 1 2 response for planar arrangement (3).<br />

And finally<br />

2 ⎛ h ⎞ ⎤<br />

exp ⎜<br />

⎜−<br />

⎟ d t⎥<br />

, (9)<br />

⎝ 4at<br />

⎠ ⎦<br />

1−s<br />

2<br />

2<br />

1−s<br />

2<br />

1<br />

P ( 4at)<br />

⎡ h h h ⎤<br />

−s<br />

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ P(<br />

4at)<br />

*<br />

ΔT ( t)<br />

=<br />

⎢exp⎜−<br />

⎟ + ⎜ ⎟ Γ ⎜ s,<br />

⎟⎥<br />

=<br />

iΦ<br />

, (10)<br />

s<br />

s<br />

4λ(<br />

1−<br />

s)<br />

π ⎢⎣<br />

⎝ 4at<br />

⎠ ⎝ 4at<br />

⎠ ⎝ 4at<br />

⎠⎥⎦<br />

4λ(<br />

1−<br />

s)<br />

π<br />

where the = c ρ a is thermal conductivity and<br />

iΦ<br />

λ p<br />

2<br />

e<br />

π<br />

Γ ( s,<br />

x )<br />

π<br />

− x<br />

2<br />

∗<br />

= s<br />

2(<br />

1−s<br />

)<br />

− x<br />

s , (11)<br />

t<br />

s −(<br />

s+<br />

1)<br />

−A<br />

t<br />

where x = h 4at<br />

and Γ ( s,<br />

A t)<br />

= A ∫t<br />

e dt<br />

is the upper incomplete gamma function.<br />

0<br />

This equation is for s = ( E − D)<br />

2 and neglecting upper incomplete gamma function equal to<br />

Δ<br />

P ( 4at)<br />

2λ<br />

π<br />

( D−E<br />

+ 2)<br />

/ 2<br />

T ( t)<br />

= ( E−D<br />

) / 2<br />

2 ⎛ h<br />

exp ⎜<br />

⎜−<br />

⎝ 4at<br />

and for E = 3 (3D space) and D = 2 (surface heat source) when s = 1 2 equal to<br />

P<br />

ΔT<br />

( t)<br />

=<br />

2λ<br />

Real fractal step wise model<br />

⎟ ⎞<br />

⎠<br />

⎟ 2<br />

4at<br />

⎛ h ⎞<br />

exp ⎜<br />

⎜−<br />

. (13)<br />

π ⎝ 4at<br />

⎠<br />

The heat loss effect was solved in a new model by defining the initial and boundary conditions<br />

for basic heat transport equation. The heat losses were taken into account at real radius of the<br />

(12)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!