14.11.2013 Views

download pdf version of PhD book - Universiteit Utrecht

download pdf version of PhD book - Universiteit Utrecht

download pdf version of PhD book - Universiteit Utrecht

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

3. Upscaling <strong>of</strong> Adsorbing Solutes; Pore Scale<br />

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .<br />

where c i∣ ∣<br />

s<br />

denotes solute concentration in the fluid at the pore wall, and c i∣ ∣<br />

pore<br />

denotes the solute concentration within the pore at some distance d. We now<br />

employ Equation (3.4) to eliminate c i∣ ∣<br />

s<br />

from (3.16) and substitute the result<br />

back into (3.15)<br />

∫<br />

∫<br />

Û i = − Di 0<br />

V kD i d s i dA + Di 0<br />

c i∣ ∣<br />

V d pore<br />

dA (3.17)<br />

A fs A fs<br />

There is <strong>of</strong> course no information on the value <strong>of</strong> c i∣ ∣<br />

pore<br />

. However, it is plausible<br />

to assume that c i∣ ∣<br />

pore<br />

is a function <strong>of</strong> average fluid concentration, c i . This<br />

means that we may replace c i∣ ∣<br />

pore<br />

by f( c i ) in Equation (3.17) and set<br />

c i∣ ∣<br />

pore<br />

= f( c i ) (3.18)<br />

Use <strong>of</strong> this approximation (Equation 3.18), recognizing the fact that c i is a<br />

constant within the averaging volume, and use <strong>of</strong> Equation (3.4) and (3.9),<br />

leads to the following macro-scale relationship<br />

Û i = − Di 0<br />

k i D d (1 − n) ρs s i + SDi 0<br />

d f( ci ) (3.19)<br />

where S [L −1 ] denotes the solid grain specific surface area, S = A fs /V . Substitution<br />

<strong>of</strong> this result into the adsorbed mass balance (3.14) yields the standard<br />

linear kinetic adsorption equation:<br />

∂ (1 − n) ρ s s i<br />

=<br />

∂t Û i = nk att f( c i ) − (1 − n) ρ s k det s i (3.20)<br />

where the kinetic rate coefficients, k att and k det [T −1 ], are defined by<br />

and<br />

k att = SDi 0<br />

nd<br />

k det = Di 0<br />

k i D d<br />

(3.21a)<br />

(3.21b)<br />

The mass balance equation for the solutes now becomes<br />

∂nc i<br />

∂t<br />

+ ∇ · (nc i v i) + ∇ · (nJ i) = nr i − nk att f( c i ) + (1 − n) ρ s k det s i (3.22)<br />

50

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!