14.11.2013 Views

download pdf version of PhD book - Universiteit Utrecht

download pdf version of PhD book - Universiteit Utrecht

download pdf version of PhD book - Universiteit Utrecht

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

3. Upscaling <strong>of</strong> Adsorbing Solutes; Pore Scale<br />

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .<br />

We introduce the following dimensionless variables and parameters:<br />

c ∗ = c<br />

c 0<br />

; r ∗ =<br />

r ; z ∗ = z ; t ∗ = ¯vt ; P e p = ¯vR 0<br />

; s ∗ =<br />

s ; κ = k D<br />

R 0 R 0 R 0 D 0 c 0 R 0<br />

R 0<br />

(3.31)<br />

where c 0 is concentration at the inlet boundary. Here P e p is the pore-scale<br />

Peclet number, which expresses the ratio between the magnitude <strong>of</strong> the advective<br />

and diffusive transport terms.<br />

Substituting in Equation (3.28) gives the pore-scale dimensionless mass transport<br />

equation<br />

∂c ∗<br />

∂t ∗ + 2(1 − r∗2 ) ∂c∗<br />

∂z ∗ = 1 [ ∂ 2 c ∗<br />

P e p ∂z ∗2 + 1 ( )]<br />

∂<br />

r ∗ ∂r ∗ r ∗ ∂c∗<br />

∂r ∗<br />

The dimensionless boundary conditions for our model are<br />

(3.32)<br />

at z ∗ = 0, c ∗ = 1.0 (3.33a)<br />

at z ∗ = ∞,<br />

at r ∗ = 0,<br />

∂c ∗<br />

∂z ∗ = 0<br />

∂c ∗<br />

∂r ∗ = 0<br />

(3.33b)<br />

(3.33c)<br />

at r ∗ = 1,<br />

∂c ∗<br />

∂r ∗ = −P e ∂s ∗<br />

p<br />

∂t ∗<br />

(3.33d)<br />

Substitution <strong>of</strong> Equation (3.30) in the boundary condition (3.33d) results in:<br />

∂c ∗<br />

∂r ∗ = −P e p κ ∂c∗<br />

∂t ∗ at r∗ = 1 (3.34)<br />

It is evident that P e p and κ are the two parameters in this set <strong>of</strong> Equations<br />

(3.32)-(3.34) which control the transport and reaction processes within the<br />

tube.<br />

The package, Flex-PDE (Flex, 2005) has been used to numerically solve this<br />

set <strong>of</strong> equations. We have simulated solute transport for a range <strong>of</strong> values<br />

<strong>of</strong> parameters P e p and κ. The solution <strong>of</strong> Equations (3.32)-(3.34) results in<br />

a concentration field c ∗ (z ∗ , r ∗ , t ∗ ) for different values <strong>of</strong> Peclet number (P e p )<br />

and dimensionless distribution coefficient (κ). This concentration field and its<br />

cross-sectional average, ¯c ∗ (z ∗ , t ∗ ), may be considered to be equivalent to “observation<br />

data”. We then use these observed data to obtain a relationship for<br />

54

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!