05.03.2014 Views

REVISTA ROMÂNĂ DE AUTOMATICĂ - IPA SA

REVISTA ROMÂNĂ DE AUTOMATICĂ - IPA SA

REVISTA ROMÂNĂ DE AUTOMATICĂ - IPA SA

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>REVISTA</strong> ROMÂNĂ <strong>DE</strong> AUTOMATICĂ<br />

25<br />

ω4<br />

− ω1<br />

z ω3<br />

− ω<br />

= − ;<br />

ω − ω z ω − ω<br />

2<br />

1<br />

2<br />

'<br />

4<br />

4<br />

1<br />

1<br />

"<br />

4<br />

z<br />

= −<br />

z<br />

3<br />

.<br />

(3)<br />

from which, with the notations (1) he or she<br />

deduced the equalities:<br />

ω 3 = ω1<br />

( 1−<br />

i) + ω2i<br />

; ω 4 = ω1( 1+<br />

i1<br />

) + ω2i1<br />

. (4)<br />

The kinetic energy of the system:<br />

1 2<br />

2 2 2 2 2<br />

E C = ( J1ω1<br />

+ m4R<br />

ω1<br />

+ J2ω2<br />

+ J3ω3<br />

+ J4ω4)<br />

. (5)<br />

2<br />

with the notations (4) and (2) has the<br />

equation:<br />

2<br />

2<br />

( Aθ&<br />

− Bθ&<br />

θ&<br />

+ Cθ<br />

)<br />

1<br />

E = 1 2 &<br />

C 1 2 2 . (6)<br />

2<br />

The mechanic power at a certain time is given<br />

by:<br />

P = M<br />

M , (7)<br />

1ω1<br />

+ M 2ω2<br />

+ 3ω3<br />

or on the basis of the other relation (4)<br />

[ M1 + M 3( 1−<br />

i)<br />

] ω1<br />

+ ( M 2 + M3<br />

) ω2<br />

P = i<br />

(8)<br />

and from here are deduced the generalized<br />

equations:<br />

Q1 = M1<br />

+ M3 (1 − i)<br />

; Q2 = M 2 + M3i<br />

. (9)<br />

Lagrange equations. Knowing the fact that<br />

ω 1 = θ & 1 ; ω 2 = θ& 2 , (10)<br />

3. THE MOVEMENTS STUDY<br />

Permanent movement. The permanent<br />

movement is deduced from the conditions<br />

ω 1 = 0;<br />

2 = 0<br />

ω , (13)<br />

that leads to these equations<br />

[ 1 + M3( 1−<br />

i)<br />

] C + ( M 2 + M3i)<br />

B = 0<br />

[ + M 1−<br />

i)<br />

] B + ( M + M i)<br />

A 0<br />

M ;<br />

M (14)<br />

1 3( 2 3 =<br />

and since AC − B 2 > 0 , we obtained the<br />

equations<br />

M + M − i)<br />

0 ; M + M i 0 . (15)<br />

1 3 (1 =<br />

2 3 =<br />

The sources of power are present by the<br />

characteristics movement-angularly speed<br />

through the relations Mi = M i ( ωi<br />

) and goes to<br />

* * *<br />

the values: ω 1 , ω 2 , ω 3 of the angularly<br />

velocities that are obtained the permanent<br />

condition that are deduced from the equation<br />

system:<br />

*<br />

*<br />

*<br />

*<br />

M ( ω ) + (1 − i)<br />

M ( ω ) 0 ; M ( ω ) + i M ( ω ) 0 ;<br />

ω<br />

1 1<br />

3 3 =<br />

*<br />

* *<br />

3 = ( 1−<br />

) ω1<br />

+ iω2<br />

2 2 3 3 =<br />

i . (16)<br />

If these values M ( * 2 ω 2)<br />

, M ( * 3 ω 3 ) are related to<br />

the value of the moment M ( * 1 ω 1)<br />

of the heat<br />

engine, one obtained the relations (17) with<br />

the graphic representations captured in figure<br />

2 and figure 3.<br />

M 2 ( ω ) i<br />

= −<br />

*<br />

M ( ω ) i −1<br />

1<br />

*<br />

2<br />

1<br />

;<br />

M 3 ( ω ) 1<br />

= −<br />

*<br />

M ( ω ) i −1<br />

1<br />

*<br />

3<br />

1<br />

, (17)<br />

from Lagrange equations are obtained the<br />

differential equations<br />

ω &<br />

1 − Bω&<br />

2 = M1<br />

+ M 3( 1−<br />

i);<br />

− Bω&<br />

1 + Cω&<br />

2 = M 2 + M i ,<br />

A 3<br />

or<br />

ω&<br />

1<br />

ω&<br />

2<br />

=<br />

=<br />

[ M + M ( 1−<br />

i)<br />

] C + ( M + M i)<br />

1<br />

[ M − M ( 1−<br />

i)<br />

] B + ( M + M i)<br />

1<br />

3<br />

3<br />

AC − B<br />

2<br />

AC − B<br />

2<br />

2<br />

2<br />

3<br />

3<br />

B<br />

;<br />

A<br />

.<br />

(11)<br />

(12)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!