22.05.2014 Views

RiskMetrics™ —Technical Document

RiskMetrics™ —Technical Document

RiskMetrics™ —Technical Document

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

72 Chapter 4. Statistical and probability foundations<br />

We can model each underlying return as a random walk that is similar to Eq. [4.17]. This yields<br />

[4.48a]<br />

[4.48b]<br />

[4.48c]<br />

,<br />

= µ 1<br />

+ σ 1 t<br />

r 1 t<br />

r 2 t<br />

,<br />

= µ 2<br />

+ σ 2 t<br />

r 3 t<br />

,<br />

= µ 2<br />

+ σ 3 t<br />

,<br />

ε 1,<br />

t<br />

,<br />

ε 2,<br />

t<br />

,<br />

ε 3,<br />

t<br />

Now, since we have three variables we must account for their movements relative to one another.<br />

These movements are captured by pairwise correlations. That is, we define measures that quantify<br />

the linear association between each pair of returns. Assuming that the ε t ’s are multivariate normally<br />

(MVN) distributed we have the model<br />

⎛<br />

⎞<br />

ε 1,<br />

t ⎜ 0<br />

1 ρ 12, t<br />

ρ 13,<br />

t ⎟<br />

[4.49] ε 2,<br />

t<br />

∼ MVN<br />

⎜<br />

0 ,<br />

⎟<br />

⎜ ρ 21, t<br />

1 ρ 23,<br />

t ⎟ , or more succinctly, ε∼<br />

MVN ( µ t<br />

, R t<br />

)<br />

⎜<br />

ε 3, t ⎝<br />

0<br />

⎟<br />

ρ 31, t<br />

ρ 32, t<br />

1 ⎠<br />

where parameter matrix R t<br />

represents the correlation matrix of ( ε 1, t<br />

, ε 2, t<br />

, ε 3,<br />

t<br />

) . Therefore, if we<br />

apply the assumptions behind Eq. [4.49] (that the sum of MVN random variables is normal) to the<br />

portfolio return Eq. [4.47], we know that r pt is normally distributed with mean µ p,t and variance<br />

2<br />

. The formulae for the mean and variance are<br />

σ pt ,<br />

[4.50a]<br />

µ pt<br />

,<br />

= w 1<br />

µ 1<br />

+ w 2<br />

µ 2<br />

+ w 3<br />

µ 3<br />

[4.50b]<br />

2<br />

σ pt ,<br />

=<br />

2 2<br />

w 1σpt<br />

,<br />

2 2<br />

w 2σpt<br />

,<br />

2 2<br />

w 3σpt<br />

,<br />

+ + + 2w 1<br />

w 2<br />

σ 12,<br />

t<br />

+ 2w 1<br />

w 3<br />

σ 13,<br />

t<br />

+<br />

2<br />

2<br />

2<br />

2w 2<br />

w 3<br />

σ 23,<br />

t<br />

2<br />

σ ij t<br />

where the terms ,<br />

represent the covariance between returns i and j. In general, these results<br />

hold for ( N ≥ 1 ) underlying returns. Since the underlying returns are distributed conditionally<br />

multivariate normal, the portfolio return is univariate normal with a mean and variance that are<br />

simple functions of the underlying portfolio weights, variances and covariances.<br />

4.5.3 The lognormal distribution<br />

In Section 4.2.1 we claimed that if log price changes are normally distributed, then price, , conditional<br />

on P t – 1<br />

is lognormally distributed. This statement implies that P t<br />

, given P t – 1<br />

, is drawn<br />

from the probability density function<br />

P t<br />

[4.51]<br />

f<br />

( P t<br />

)<br />

=<br />

1 –( lnP ---------------------------<br />

t – 1<br />

– µ ) 2<br />

exp -------------------------------------- P<br />

2<br />

t 1<br />

><br />

P t – 1<br />

σ t<br />

2π 2σ t<br />

–<br />

0<br />

where<br />

[4.52]<br />

[4.53]<br />

P t<br />

follows a lognormal distribution with a mean and variance given by<br />

E[ P t<br />

] =<br />

⎛ 2⎞<br />

exp⎝µ + 5σ t ⎠<br />

V ( P t<br />

) =<br />

⎛ 2⎞<br />

⎛ 2⎞<br />

exp2µ t<br />

⋅ exp⎝2σ t ⎠–exp⎝σ t ⎠<br />

RiskMetrics —Technical <strong>Document</strong><br />

Fourth Edition

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!