02.09.2014 Views

multivariate poisson hidden markov models for analysis of spatial ...

multivariate poisson hidden markov models for analysis of spatial ...

multivariate poisson hidden markov models for analysis of spatial ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

notation <strong>of</strong> Marshall and Olkin (1985), and Johnson et al. (1997), Brijs (2002) and Brijs<br />

et al. (2004), and based on the discussion in section 5.1, a trivariate Poisson random<br />

variable ( Y<br />

1,<br />

Y2<br />

, Y3<br />

) with parameters ( θ1, θ2, θ3, θ12, θ13, θ23, θ<br />

123)<br />

can then be constructed<br />

from a number <strong>of</strong> independent univariate Poisson distributions as follows:<br />

Y<br />

Y<br />

Y<br />

1<br />

2<br />

3<br />

= X<br />

1<br />

= X<br />

= X<br />

2<br />

3<br />

+ X<br />

+ X<br />

12<br />

+ X<br />

12<br />

13<br />

+ X<br />

+ X<br />

13<br />

+ X<br />

23<br />

23<br />

+ X<br />

+ X<br />

+ X<br />

123<br />

123<br />

123<br />

with all X ’s are independent univariate Poisson distributions with their respective<br />

means θ<br />

1,<br />

θ<br />

2,<br />

θ , θ<br />

12,<br />

θ , ,<br />

3<br />

13<br />

θ<br />

23<br />

θ<br />

123<br />

. The calculation <strong>of</strong> the probability distribution <strong>of</strong><br />

PY [ = y, Y = y , Y = y]<br />

is not easy. The solution is based on the observation that<br />

1 1 2 2 3 3<br />

PY [ = y, Y = y, Y = y]<br />

is the marginal distribution from<br />

1 1 2 2 3 3<br />

PY [ = y, Y = y , Y = y, X = x , X = x , X = x , X = x ] and can be obtained<br />

1 1 2 2 3 3 12 12 13 13 23 23 123 123<br />

by summing out over all X ’s, i.e.,<br />

PY [ = y, Y = y , Y = y]<br />

=<br />

1 1 2 2 3 3<br />

L1 L2 L3<br />

L4<br />

∑∑∑∑<br />

x12 = 0x13= 0x23= 0 x123=<br />

0<br />

PY [ = y, Y = y , Y = y, X = x , X = x , X = x , X = x ]<br />

1 1 2 2 3 3 12 12 13 13 23 23 123 123<br />

(5.1)<br />

with L<br />

1<br />

= min( y1,<br />

y2<br />

),<br />

L<br />

= min( y1<br />

− x12<br />

,<br />

3),<br />

2<br />

y<br />

L = min( y −x , y −x<br />

),<br />

3 2 12 3 13<br />

L = min( y −x −x , y −x −x , y −x −x<br />

).<br />

4 1 12 13 2 12 23 3 13 23<br />

The above expression (5.1) demonstrates that the x’s are summed out over all possible<br />

values <strong>of</strong> the respective X’s. It is known that the X’s should take only positive integer<br />

values or zero, since the X’s are Poisson distributed variables. However, the upper<br />

bounds (L’s) <strong>of</strong> the different X’s are unknown and will depend on the values <strong>of</strong> y<br />

1,<br />

y<br />

2<br />

,<br />

60

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!