02.09.2014 Views

multivariate poisson hidden markov models for analysis of spatial ...

multivariate poisson hidden markov models for analysis of spatial ...

multivariate poisson hidden markov models for analysis of spatial ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Marginal distributions are Poisson:<br />

Y<br />

i<br />

~<br />

i ij ik<br />

Poisson(<br />

θ + θ + θ ) ,<br />

⎧i<br />

= 1,..., n<br />

⎪<br />

⎨ jk , = 2,..., n.<br />

⎪<br />

⎩ jk , ≠ i<br />

The joint probability function is given by<br />

py ( , y, y; ) = PY [ = yY , = y, Y= y]<br />

=<br />

(2)<br />

( y − x )<br />

1 2<br />

θ m<br />

(3) m∈<br />

( y<br />

j<br />

− xk)! xi!<br />

.<br />

x<br />

A ∏ ∑ ∏<br />

( j )<br />

j∈R1 k∈R<br />

i∈R<br />

2<br />

2<br />

1 2 3 1 1 2 2 3 3<br />

L<br />

∑<br />

∑<br />

exp( − θ )<br />

∏<br />

j∈R<br />

θ<br />

j<br />

∑<br />

j k<br />

( j )<br />

k∈R<br />

2<br />

∏<br />

i∈R<br />

θ<br />

xi<br />

i<br />

The calculation <strong>of</strong> above joint probability function is not easy. Here, we used recurrence<br />

relations involving densities to compute the probability function. In 1967, Mahamunulu<br />

presented some important notes regarding p variate Poisson distributions. According to<br />

him the following recurrence relations are obtained <strong>for</strong> the trivariate two-way<br />

covariance model:<br />

y p( y , y , y ) = θ p( y − 1, y , y ) + θ p( y −1, y − 1, y ) + θ p( y −1, y , y − 1) (5.7)<br />

1 1 2 3 1 1 2 3 12 1 2 3 13 1 2 3<br />

y p( y , y , y ) = θ p( y , y − 1, y ) + θ p( y −1, y − 1, y ) + θ p( y , y −1, y − 1) (5.8)<br />

2 1 2 3 2 1 2 3 12 1 2 3 23 1 2 3<br />

y p( y , y , y ) = θ p( y , y , y − 1) + θ p( y −1, y , y − 1) + θ p( y , y −1, y − 1) , (5.9)<br />

3 1 2 3 3 1 2 3 13 1 2 3 23 1 2 3<br />

with py (<br />

1, y2, y<br />

3) = 0 if min{ y1, y2, y<br />

3} < 0.<br />

It also gives the following relations:<br />

ypy<br />

1<br />

(<br />

1, y2, 0) = θ1py (<br />

1− 1, y2, 0) + θ12py (<br />

1−1, y2− 1, 0) y1, y2<br />

≥ 1<br />

yp<br />

2<br />

(0, y2, y3) = θ2p(0, y2− 1, y3) + θ23p(0, y2−1, y3− 1) y2, y3<br />

≥ 1<br />

(5.10)<br />

ypy<br />

3<br />

(<br />

1,0, y3) = θ3py (<br />

1,0, y3− 1) + θ13py (<br />

1−1,0, y3− 1) y1, y3<br />

≥ 1<br />

74

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!