02.09.2014 Views

multivariate poisson hidden markov models for analysis of spatial ...

multivariate poisson hidden markov models for analysis of spatial ...

multivariate poisson hidden markov models for analysis of spatial ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

5.2.1 The <strong>multivariate</strong> Poisson distribution with common covariance<br />

Suppose that<br />

X i<br />

are independent Poisson random variables with mean θ i<br />

, <strong>for</strong><br />

i = 0,1,...,<br />

n and let Yi = X<br />

0<br />

+ X<br />

i<br />

, i = 1,...,<br />

n . Then the random vector Y = ( Y1,<br />

Y2,...,<br />

Yn<br />

)<br />

follows a n-variate Poisson distribution, where n denotes the dimension <strong>of</strong> the<br />

distribution. The joint probability function (Karlis, 2003) is given by<br />

p( y; θ ) = PY [<br />

1<br />

= y1, Y2 = y2,..., Yn<br />

= yn]<br />

⎡ ⎛<br />

⎢<br />

θ ⎛ y ⎞ ⎜<br />

= exp − ⎜ ⎟ !<br />

n n yi<br />

s n<br />

⎛ ⎞<br />

i<br />

j<br />

0<br />

θ<br />

⎢<br />

i<br />

i ⎥<br />

⎜ ∑ ⎟∏<br />

∑<br />

⎜ ⎟<br />

n<br />

i= 1 i= 1 yi<br />

! ⎢∏<br />

⎝ ⎠ i=<br />

0 j=<br />

1 ⎝i<br />

⎠ ⎜ ⎥<br />

θ<br />

⎟<br />

⎢ ⎜∏<br />

k ⎟ ⎥<br />

k = 1<br />

⎢⎣<br />

⎝<br />

θ<br />

i<br />

⎞ ⎤<br />

⎟ ⎥<br />

, (5.4)<br />

where s = min{ y1,<br />

y2,...,<br />

yn}<br />

. Marginally each Y i<br />

follows a Poisson distribution with<br />

parameter θ<br />

0<br />

+θ<br />

i<br />

. The parameter θ 0<br />

(common covariance) is the covariance between<br />

all the pairs <strong>of</strong> random variables ( Y, Y ) where i, j∈ {1,..., n}<br />

and i ≠ j. If θ 0 then<br />

i<br />

j<br />

the variables are independent and the <strong>multivariate</strong> Poisson distribution reduces to the<br />

product <strong>of</strong> independent Poisson distributions. The recurrence relations can be applied to<br />

compute the above probabilities. A general scheme <strong>for</strong> constructing recurrence relations<br />

<strong>for</strong> <strong>multivariate</strong> Poisson distributions was provided by Kano and Kawamura (1991).<br />

Details are given below.<br />

⎠<br />

⎥⎦<br />

0<br />

=<br />

Some notations are introduced first to make it easy to explain the distributions. Let 0<br />

and 1 denote the vector with all elements equal to 0 and 1 respectively and e<br />

i<br />

the unit<br />

vector with all elements 0 except from the i th element which is equal to 1. Using this<br />

70

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!