02.09.2014 Views

multivariate poisson hidden markov models for analysis of spatial ...

multivariate poisson hidden markov models for analysis of spatial ...

multivariate poisson hidden markov models for analysis of spatial ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

notation, the following recursive scheme is proved <strong>for</strong> the <strong>multivariate</strong> Poisson<br />

distribution presented in (5.4):<br />

yp( y) = θ p( y− e ) + θ p( y−1 ), i = 1,...,<br />

n<br />

(5.5)<br />

i<br />

i<br />

i<br />

0<br />

k k<br />

⎛ ⎞ θi<br />

PY [<br />

1<br />

= y1,..., Yk = yk, Yk+<br />

1<br />

= 0,..., Yn<br />

= 0] = p⎜y−∑e i ⎟∏<br />

, <strong>for</strong> k = 1,..., n− 1, (5.6)<br />

⎝ i= 1 ⎠ i=<br />

1<br />

yi<br />

where the order <strong>of</strong> Y i<br />

’s and 0’s can be interchanged to cover all possible cases, while<br />

n<br />

p( 0 ) exp( θ ). The recurrence equation (5.6) holds <strong>for</strong> arbitary permutations <strong>of</strong> Y i ’s.<br />

= −∑<br />

i=<br />

0<br />

i<br />

It can be seen that since at every case at least one <strong>of</strong> the y i<br />

’s equals 0, i.e. s = 0, the<br />

sum appearing in the joint probability function has just one term and hence the joint<br />

probability function takes the useful <strong>for</strong>m P[ Y= y ] = exp( −θ<br />

0) ∏ Po( yi; θi),<br />

where<br />

y<br />

θ<br />

Po(<br />

y;<br />

θ ) = exp( −θ ) denotes the probability function <strong>of</strong> the simple Poisson<br />

y!<br />

distribution with a parameter θ . Then equation (5.6) arises by using the recurrence<br />

relation <strong>for</strong> the univariate Poisson distribution (Tsiamyrtzis and Karlis, 2004).<br />

n<br />

i=<br />

1<br />

Two examples <strong>of</strong> recurrence relations <strong>for</strong> the common covariance <strong>multivariate</strong> Poisson<br />

distribution are given below. The θ in all recurrence relations is suppressed <strong>for</strong><br />

simplicity <strong>of</strong> the notation.<br />

The bivariate Poisson distribution has joint probability function given by:<br />

y1 y2<br />

s<br />

− ( θ0+ θ1+<br />

θ2) θ1 θ2<br />

⎛y1⎞⎛y2⎞<br />

⎛ θ0<br />

⎞<br />

py (<br />

1, y2) = PY [<br />

1<br />

= y1, Y2 = y2] = e ∑ ⎜ ⎟⎜ ⎟i! ⎜ ⎟ ,<br />

y1! y2!<br />

i=<br />

0 ⎝i<br />

⎠⎝i<br />

⎠ ⎝θθ<br />

1 2 ⎠<br />

i<br />

71

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!