02.09.2014 Views

multivariate poisson hidden markov models for analysis of spatial ...

multivariate poisson hidden markov models for analysis of spatial ...

multivariate poisson hidden markov models for analysis of spatial ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

and y<br />

3<br />

as illustrated above. Again, to rewrite equation 5.1 in compact <strong>for</strong>m, we can<br />

define the following notations:<br />

⎡L<br />

⎤<br />

1<br />

(2) ⎢<br />

L<br />

⎥ (3)<br />

L<br />

2<br />

, = [ L 4 ]<br />

= ⎢ ⎥<br />

⎢⎣L<br />

⎥<br />

3 ⎦<br />

L and<br />

R = ( R ∪R ∪ R ) where<br />

(1) (2) (3)<br />

2 2 2 2<br />

(1)<br />

R<br />

2<br />

= {12,13},<br />

(2)<br />

R<br />

2<br />

= {12,23},<br />

(3)<br />

R<br />

2<br />

= {13, 23}.<br />

In fact, substituting the X ’s <strong>for</strong> the Y ’s in (5.1) result in:<br />

L<br />

(2) (3)<br />

L<br />

∑∑<br />

PY [ = y, Y = y , Y = y ] = P[ X = x, X = x , X = x, X = x , X = x , X = x , X = x ]<br />

1 1 2 2 3 3 1 1 2 2 3 3 12 12 13 13 23 23 123 123<br />

(2) (3)<br />

= 0 = 0<br />

x<br />

x<br />

and since the X ’s are independent univariate Poisson variables, the joint distribution<br />

reduces to the product <strong>of</strong> the univariate distributions:<br />

1 1 2 2 3 3<br />

L<br />

(2) (3)<br />

L<br />

∑∑∏<br />

∑ ∑<br />

PY [ = y, Y = y , Y = y ] = P[ X = ( y − x − x)] P[ X = x]<br />

.<br />

∏<br />

j j k l i i<br />

(2) (3) ( j )<br />

= 0x<br />

= 0 j∈R1 k∈R<br />

l∈R<br />

2<br />

3 i∈R2∪R3<br />

x<br />

Now, the following three conditions on X<br />

1,<br />

X<br />

2,<br />

and X<br />

3<br />

must be satisfied, since the<br />

X ’s are univariate Poisson distributions, and since the Poisson distribution is only<br />

defined <strong>for</strong> positive integer values and zero:<br />

y −x −x −x<br />

≥0<br />

1 12 13 123<br />

y −x −x −x<br />

≥0<br />

2 12 23 123<br />

y −x −x −x<br />

≥0.<br />

3 13 23 123<br />

(5.2)<br />

These conditions imply that all x ’s cannot just be any integer value, but depend on the<br />

values <strong>of</strong> y<br />

1,<br />

y<br />

2<br />

, and y<br />

3<br />

. Accordingly, the distribution <strong>for</strong> PY [<br />

1<br />

= y1, Y2 = y2, Y3 = y3]<br />

by summing up all the x ’s is:<br />

61

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!