29.10.2014 Views

The Effect of Peening on the Fatigue Life of 7050 Aluminium Alloy

The Effect of Peening on the Fatigue Life of 7050 Aluminium Alloy

The Effect of Peening on the Fatigue Life of 7050 Aluminium Alloy

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

DSTO-RR-0208<br />

Table 7: <str<strong>on</strong>g>The</str<strong>on</strong>g> average log fatigue life results for each peening/rework simulati<strong>on</strong>.<br />

Simulati<strong>on</strong> Process<br />

Av. <strong>Fatigue</strong> life after<br />

last rework (SFH)<br />

Additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fatigue life<br />

between reworks (SFH)<br />

Total Av. <strong>Fatigue</strong> <strong>Life</strong><br />

(SFH)<br />

C1 9287 0 9287<br />

C2 16550 0 16550<br />

F1 16026 3000 19026<br />

F2 17624 3000+3000 23624<br />

F3 20327 6000 26327<br />

F4 17865 3000+3000 23865<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> results are also shown in Figure 25. For comparis<strong>on</strong> a polished specimen (C1) fatigue<br />

life is 9287SFH. Column 2 in Table 7 shows that all peening gives an improvement in<br />

subsequent fatigue life at <strong>the</strong> test stress k t s= 410MPa. All o<strong>the</strong>r tests were completed <strong>on</strong> new<br />

coup<strong>on</strong>s, which is why C2 (OEM simulated original peening) average fatigue life is slightly<br />

lower than <strong>the</strong> results presented in Table 5 for <strong>the</strong> same c<strong>on</strong>diti<strong>on</strong>.<br />

30000<br />

Polish<br />

Peen<br />

<strong>Fatigue</strong> 3000hrs-rework-fatigue<br />

<strong>Fatigue</strong> 3000hrs-rework-fatigue 3000hrs-rework-fatigue<br />

<strong>Fatigue</strong> 6000hrs-rework-fatigue<br />

<strong>Fatigue</strong> 3000hrs-rework-fatigue 3000hrs-ceramic rework-fatigue<br />

Number <str<strong>on</strong>g>of</str<strong>on</strong>g> Cycles<br />

25000<br />

20000<br />

15000<br />

10000<br />

5000<br />

0<br />

Cycles to failure from last rework<br />

Total Cycles (rework+failure)<br />

Figure 25: Left –Average number <str<strong>on</strong>g>of</str<strong>on</strong>g> cycles to failure after <strong>the</strong> last rework , <strong>on</strong> <strong>the</strong> Right-Total number<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> cycles to failure. As can be seen <strong>the</strong>re is little variati<strong>on</strong> in <strong>the</strong> cycles to failure after <strong>the</strong><br />

last rework, indicating that sufficient material has been removed before final peening to<br />

restore complete life.<br />

A significant result in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> aircraft lifing is <strong>the</strong> reducti<strong>on</strong> in fatigue life scatter when<br />

using ceramic beads compared to glass beads. This reducti<strong>on</strong> can be attributed directly to <strong>the</strong><br />

quality <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> beads and <strong>the</strong> reducti<strong>on</strong> in <strong>the</strong> number <str<strong>on</strong>g>of</str<strong>on</strong>g> broken beads embedding in <strong>the</strong><br />

specimen surface. It is also interesting that ceramic beads provide a similar fatigue life to<br />

glass beads. This result was observed by MCAIR but not by earlier AMRL testing that<br />

34

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!