27.11.2014 Views

a review - Acta Technica Corviniensis

a review - Acta Technica Corviniensis

a review - Acta Technica Corviniensis

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

The motion of the spring pendulum is described by<br />

the following second order differential equation<br />

system. They can be obtained by the aid of second<br />

order Lagrangian-equation.<br />

2<br />

mr&<br />

ϕ −s(<br />

r −ro ) + mgcosϕ<br />

& r =<br />

,<br />

m<br />

M −mgrsinϕ<br />

−2mrr<br />

& & ϕ<br />

&& ϕ =<br />

2<br />

mr<br />

After two-time numerical integration of motion<br />

equations the following kinematical functions can be<br />

obtained.<br />

50<br />

40<br />

30<br />

20<br />

10<br />

-20<br />

-30<br />

-40<br />

r"(t), m/s2<br />

0<br />

-10 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1<br />

150<br />

100<br />

50<br />

φ"(t), rad/s2<br />

0,35<br />

0,30<br />

0,25<br />

0,20<br />

0,15<br />

0,10<br />

0,05<br />

ACTA TECHNICA CORVINIENSIS – Bulletin of Engineering<br />

r(t), m<br />

0,00<br />

0 0,2 0,4 0,6 0,8 1<br />

1,5<br />

1,0<br />

0,5<br />

-1,0<br />

-1,5<br />

-2,0<br />

φ(t), rad<br />

0,0<br />

0<br />

-0,5<br />

0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1<br />

Figure 2. The kinematical functions for Example 1:<br />

Spring pendulum<br />

EXAMPLE 2: LINK MECHANISM WITH<br />

RECIPROCATING MOTION MASS (DOF: 2)<br />

In Fig. 2 a sketch of a simple mechanical system (two<br />

degrees of freedom) can be seen. There is a mass and<br />

a link mechanism in between a spring.<br />

0<br />

0<br />

-50<br />

0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1<br />

-100<br />

-150<br />

r'(t), m/s<br />

2,0<br />

1,5<br />

1,0<br />

0,5<br />

0,0<br />

-0,5 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1<br />

-1,0<br />

-1,5<br />

-2,0<br />

φ'(t), rad/s<br />

15<br />

10<br />

5<br />

0<br />

0,0<br />

-5<br />

0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0<br />

-10<br />

-15<br />

110<br />

Figure 3. Sketch of link mechanism<br />

Data: M = 2 Nm, J = 4 kgm 2 , r = 0.15 m, s = 1000 N/m,<br />

m = 20 kg, x& o<br />

= 0m/<br />

s, x o<br />

= 0m, ϕ& =3rad<br />

s ,<br />

o<br />

/<br />

ϕ<br />

o<br />

= 0rad, (time step: 0.005 s, time interval: 0 ≤ t ≤ 3<br />

s). The motion of the link mechanism can be<br />

described by the following second order differential<br />

equation system.<br />

srcosϕ<br />

−kx&<br />

−sx<br />

&& r =<br />

,<br />

m<br />

M −sr( x−rcosϕ<br />

)<br />

&<br />

ϕ =<br />

J<br />

After two-time numerical integration of motion<br />

equations the kinematical functions will be the<br />

followings.<br />

2013. Fascicule 2 [April–June]

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!