27.11.2014 Views

a review - Acta Technica Corviniensis

a review - Acta Technica Corviniensis

a review - Acta Technica Corviniensis

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

The wire movement is reported to the fixed system<br />

Oxz. Also, a moving system attaches against the force<br />

O 1 x 1 z with<br />

x = Vt + x 1<br />

(1)<br />

The wire motion equation reported to the fixed<br />

referential is<br />

2<br />

2<br />

∂ w ∂w<br />

∂ w<br />

m + a + kw − T = P cosωtδ(<br />

x −Vt)<br />

, (2)<br />

2<br />

2<br />

∂t<br />

∂t<br />

∂x<br />

where k is the elastic constant, and a – the damping<br />

constant of the continuous elastic support.<br />

Also, the boundary conditions have to be considered<br />

lim w = 0 . (3)<br />

x−Vt<br />

→∞<br />

Actually, the steady state behaviour is interesting<br />

and due to that, the change of variable (1) is<br />

recommended, where the motion is reported to the<br />

moving referential. Practically, the following<br />

relations will be applied<br />

n n n<br />

n<br />

∂ ∂<br />

→ ,<br />

∂ ⎛ ∂ ∂ ⎞<br />

n n<br />

→ V<br />

n<br />

∂x ∂x1<br />

t<br />

⎜ −<br />

t x<br />

⎟ . (4)<br />

∂ ⎝ ∂ ∂ 1 ⎠<br />

The equation of motion (2) and the boundary<br />

conditions (3) become<br />

2<br />

2<br />

2 ∂ w ∂w<br />

∂ w<br />

( mV − T ) − aV − 2mV<br />

+<br />

2<br />

∂x<br />

∂x<br />

1<br />

1 ∂x1∂t<br />

2<br />

∂w<br />

∂ w<br />

+ kw + a + m = P cosωtδ(<br />

x1<br />

) (5)<br />

2<br />

∂t<br />

∂t<br />

lim w = 0 . (6)<br />

x1<br />

→∞<br />

Considering the steady state harmonic behaviour, the<br />

complex variables<br />

iωt<br />

i t<br />

t<br />

w( x1 , t)<br />

= w(<br />

x1<br />

) e , P t Pe<br />

ω i0 iω<br />

( ) = = Pe e (7)<br />

have to verify the following equation<br />

2<br />

2 d w<br />

dw<br />

( mV − T ) − V ( a + 2ωmi)<br />

+<br />

2<br />

dx<br />

dx<br />

1<br />

2<br />

+ k − ω m + ωai)<br />

w = Pδ(<br />

x )<br />

(8)<br />

( 1<br />

and the boundary conditions<br />

lim w = 0 . (9)<br />

x1<br />

→∞<br />

To solve the problem defined by the equation (8) and<br />

the boundary conditions (9), the Green’s functions<br />

method may be applied [11]. In fact, the solution is<br />

given as<br />

∞<br />

w ( x1 ) =<br />

∫<br />

G(<br />

x1,<br />

ξ)<br />

P δ(<br />

ξ)dξ<br />

= P G(<br />

x1,0)<br />

, (10)<br />

− ∞<br />

where G(x 1 , ξ) is the Green’s function. This function<br />

represents the wire response in the x 1 section of the<br />

moving reference frame, due to a unit harmonic<br />

force applied in the section of the same moving<br />

reference frame. It has to be observed the fact that<br />

the wire response is defined by the Green’s function<br />

and this function is the receptance.<br />

The Green’s function can be built as a linear<br />

combination of the eigenfunctions of the differential<br />

operator of the equation (8). To find this function,<br />

the starting point is the homogenous equation<br />

1<br />

ACTA TECHNICA CORVINIENSIS – Bulletin of Engineering<br />

2<br />

2 d w<br />

dw<br />

( mV −T<br />

) −V<br />

( a + 2ωmi)<br />

+<br />

2<br />

dx<br />

dx<br />

1<br />

1<br />

2<br />

+ ( k − ω m + ωai)<br />

w = 0<br />

(11)<br />

and its solution<br />

λx1<br />

w ( x 1 ) = Ae . (12)<br />

Then, the characteristic equation is obtained<br />

2 2<br />

2<br />

( mV − T ) λ − V ( a + 2ωmi)<br />

λ + k − ω m + ωai<br />

= 0 (13)<br />

After some calculations, this equation takes the<br />

following form<br />

2 2 2<br />

2 2<br />

( V − c ) λ − 2V<br />

( ζω0<br />

+ ωi)<br />

λ + ω0<br />

− ω + 2ζω0ωi<br />

= 0 (14)<br />

where<br />

a<br />

2 k T<br />

ζ = , ω = , c =<br />

(15)<br />

0<br />

2 mk m m<br />

The solutions of the characteristic equation<br />

represent the eigenvalues<br />

ω<br />

0<br />

λ1,2<br />

= ⋅μ1,2<br />

(16)<br />

c<br />

2 2 2<br />

α(<br />

ζ + Ωi)<br />

± 1− Ω − α (1 − ζ ) + 2ζΩi<br />

where μ 1,2 =<br />

(17)<br />

2<br />

α −1<br />

V ω<br />

with α = , Ω = . (18)<br />

c<br />

ω 0<br />

There are two cases, the so-called sub-critical and<br />

overcritical cases.<br />

1. The sub-critical case (α < 1) – the force velocity is<br />

smaller than the velocity of the elastic wave in the<br />

contact wire; the critical velocity has value of c. In<br />

this case, the eigenvalues real parts have opposite<br />

signs<br />

Re λ 1 < 0, Re λ 2 > 0.<br />

(19)<br />

In fact, the Green’s function G(x 1 , ξ) has two forms<br />

satisfying the boundary conditions<br />

−<br />

− λ 2 x1<br />

G ( x 1 , ξ ) = A e for − ∞ < x 1 < ξ (20)<br />

+<br />

+ λ1<br />

x1<br />

G ( x 1 , ξ ) = A e for ξ < x 1 < ∞ ,<br />

−<br />

where A and A + depend on the ξ variable. These<br />

functions will be calculated using both continuity and<br />

jump conditions.<br />

The Green’s function has to be continuous in x 1 = ξ<br />

− λ 2 ξ + λ1<br />

ξ<br />

A e = A e . (21)<br />

Its derivation in respect to x 1 has a jump in x 1 = ξ<br />

+<br />

−<br />

∂G<br />

( ξ + 0, ξ)<br />

∂G<br />

( ξ − 0, ξ)<br />

1 1<br />

−<br />

=<br />

(22)<br />

2<br />

∂x1 ∂x1<br />

T α −1<br />

respectively<br />

+ λ<br />

1 1<br />

1 ξ − λ2<br />

ξ<br />

λ1<br />

A e − λ2<br />

A e = . (23)<br />

2<br />

T α −1<br />

Upon solving the equations (21) and (23), it is<br />

obtained<br />

k<br />

− μ 2ξ<br />

k<br />

− μ ξ<br />

1<br />

T<br />

− 1 e<br />

T<br />

A =<br />

, + 1 e<br />

2<br />

A =<br />

(24)<br />

2<br />

kT ( μ1<br />

− μ2)(<br />

α −1)<br />

kT ( μ1<br />

− μ2)(<br />

α −1)<br />

and then, the Green’s function<br />

T<br />

− 1 e<br />

G ( x1,<br />

ξ)<br />

=<br />

for − ∞ < x<br />

2<br />

1 < ξ (25)<br />

kT ( μ − μ )( α −1)<br />

1<br />

k<br />

μ 2 ( x1<br />

−ξ)<br />

2<br />

36<br />

2013. Fascicule 2 [April–June]

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!