28.11.2014 Views

THE EGS5 CODE SYSTEM

THE EGS5 CODE SYSTEM

THE EGS5 CODE SYSTEM

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

= ∆E<br />

( ∣ ∣∣∣ dE<br />

−1 ∣ )<br />

∣∣∣<br />

f(E 0 )<br />

dE<br />

−1<br />

2 dx ∣ + f(E 1 )<br />

E 0<br />

dx ∣<br />

E 1<br />

Thus, the random energy hinge step distances are limited by the accuracy which can be achieved<br />

in numerically integrating energy dependent quantities of interest using the trapezoid rule. This<br />

limit suggests a prescription for determining the energy hinge step-sizes in <strong>EGS5</strong>: we take t as<br />

the longest step-size which assures that Equation 2.379 is accurate to within a given tolerance ɛ fE<br />

when applied to the integration of the following: the stopping power to compute the energy loss;<br />

the scattering power to compute the scattering strength; and the hard collision cross section to<br />

compute the hard collision total scattering probability and mean free path. Thus, in general, if<br />

∆F | anal<br />

is the analytic integral of one of our functions f over t, we wish to satisfy<br />

or<br />

or<br />

∫ E1<br />

E 0<br />

dEf(E)<br />

∣ ∣∣∣ dE<br />

dx<br />

∫ t<br />

0<br />

∆F | anal<br />

− F (t) ≤ ɛ fE (2.379)<br />

[ ]<br />

ds f(t)<br />

t<br />

∣ −<br />

anal 2 (f(E 0) + f(E 1 )) ≤ ɛ fE (2.380)<br />

∣<br />

∣−1 ∣ [<br />

∣∣∣anal RC (E 0 ) − R C (E 1 )<br />

−<br />

2<br />

where R C (E) is the CSDA range for an electron with energy E.<br />

]<br />

(f(E 0 ) + f(E 1 )) ≤ ɛ fE (2.381)<br />

For the scattering strength, the function f is the scattering power G 1 , and for energy loss<br />

f is the stopping power, in which case the analytical expression reduces simply to ∆E. Note<br />

that in the case of the electron mean free path and total scattering probability, the expressions<br />

for both the analytical function and the random hinge results are somewhat different from the<br />

results described above, as the integrands for those quantities contain the spatial distribution of<br />

the collision distances. For the random energy hinge methodology, the probability per unit path of<br />

an interaction taking place over a step of length t is given by<br />

p(s:h) = Σ 0 e −sΣ 0<br />

s ≤ h, (2.382)<br />

Σ 1 e −hΣ 0<br />

e −(s−h)Σ 1<br />

s > h<br />

where h is the hinge distance, Σ 0 the cross section at the initial energy, and Σ 1 the cross section<br />

after the energy hinge. The random hinge mean free path over t is then given as<br />

λ Eh (t) =<br />

=<br />

=<br />

=<br />

=<br />

∫ t<br />

1<br />

ds s p(s) (2.383)<br />

P Eh (t) 0<br />

∫<br />

1 t ∫ s<br />

ds s dh p(s:h) p(h)<br />

P Eh (t) 0 0<br />

∫<br />

1 t ∫ s [ Σ0 (t − s)<br />

ds s dh e −sΣ 0<br />

+ Σ ]<br />

1<br />

P Eh (t) 0 0 st<br />

t e−hΣ 0<br />

e −(s−h)Σ 1<br />

⎡<br />

∫<br />

1 t<br />

ds s ⎣ Σ 0(t − s)<br />

e −sΣ 0<br />

+ Σ 1e −sΣ 1<br />

(1 )<br />

− e −s(Σ ⎤<br />

0−Σ 1 )<br />

⎦<br />

P Eh (t) 0 t<br />

t(Σ 0 − Σ 1 )<br />

⎡<br />

1<br />

⎣ 1 − e−tΣ 1<br />

(1 )<br />

( )<br />

− e −t(Σ 0−Σ 1 ) (<br />

1 + 1 )<br />

+ (Σ ⎤<br />

0 − Σ 1 ) 1 − e −tΣ 0<br />

P Eh (t) Σ 0 (Σ 0 − Σ 1 )<br />

tΣ 1 tΣ 2 0 Σ ⎦<br />

1<br />

109

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!