28.11.2014 Views

THE EGS5 CODE SYSTEM

THE EGS5 CODE SYSTEM

THE EGS5 CODE SYSTEM

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

where P Eh (t) is the probability that there is a hard collision of any kind over t, p(h) is uniform and<br />

given by 1/s, with the probability for a given s that we have yet to encounter the hinge given by<br />

(t − s)/t and the probability that we are past the hinge given by s/t. P Eh (t) is given by<br />

∫ t<br />

∫ s<br />

P Eh (t) = ds dh p(s:h) p(h) (2.384)<br />

0 0<br />

∫ t ∫ s [ Σ0 (t − s)<br />

= ds dh e −sΣ 0<br />

+ Σ ]<br />

1<br />

0 0 st<br />

t e−hΣ 0<br />

e −(s−h)Σ 1<br />

⎡<br />

∫ t<br />

= ds ⎣ Σ 0(t − s)<br />

e −sΣ 0<br />

+ Σ 1e −sΣ 1<br />

(1 )<br />

− e −s(Σ ⎤<br />

0−Σ 1 )<br />

⎦<br />

0 t<br />

t(Σ 0 − Σ 1 )<br />

= 1 − e−tΣ 1<br />

(1 )<br />

− e −t(Σ 0−Σ 1 )<br />

t(Σ 0 − Σ 1 )<br />

Note that the distribution of collision distances, p(s), for the random energy hinge can be seen from<br />

the integrand in the above expressions to be<br />

p(s) = Σ 0(t − s)<br />

e −sΣ 0<br />

+ Σ 1e −sΣ 1<br />

(1 )<br />

− e −s(Σ 0−Σ 1 )<br />

(2.385)<br />

t<br />

t(Σ 0 − Σ 1 )<br />

In the exact case for electrons passing through media with varying cross sections, we have, of<br />

course,<br />

λ(t) = 1 ∫ t<br />

{ ∫ s }<br />

ds s Σ(s) exp − ds ′ Σ(s ′ )<br />

(2.386)<br />

P (t) 0<br />

0<br />

with the expression for P (t), the probability of any scatter,<br />

∫ t<br />

{ ∫ s }<br />

P (t) = ds Σ(s) exp − ds ′ Σ(s ′ )<br />

0<br />

0<br />

Expressed in terms of energy loss steps rather than distance these become<br />

∫ E1<br />

{<br />

λ(t) = dE (R C (E 0 ) − R C (E))<br />

dE<br />

−1<br />

∫ E<br />

∣ ∣∣∣ ∣ dx ∣ Σ(E) exp − dE ′ dE ′<br />

E 0<br />

dx ∣<br />

E 0<br />

−1<br />

Σ(E ′ )<br />

}<br />

(2.387)<br />

(2.388)<br />

and<br />

P (t) =<br />

∫ E1<br />

E 0<br />

dE<br />

dE<br />

∣ dx ∣<br />

−1<br />

Σ(E) exp<br />

{<br />

−<br />

∫ E<br />

∣ ∣∣∣<br />

dE ′ dE ′<br />

E 0<br />

dx<br />

}<br />

−1<br />

∣ Σ(E ′ )<br />

(2.389)<br />

Note that in the above, we have described energy hinge steps in both terms of the change in<br />

energy loss (from E 0 to E 1 ) and also in terms of distance traveled t, as convenient. In <strong>EGS5</strong> we<br />

use a simple prescription for relating the two and for switching back and forth. For a given initial<br />

energy E 0 and a pathlength t, E 1 is given as E 0 − ∆E(t) with ∆E(t) computed as follows. A table<br />

of electron CSDA ranges R C (E) is constructed as a function of energy as<br />

R C (E) =<br />

∫ E<br />

0<br />

110<br />

dE ′ ∣ ∣∣∣ dE<br />

dx<br />

−1<br />

∣ . (2.390)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!