10.07.2015 Views

Shaping the Energy Efficiency in New Buildings - Building Energy ...

Shaping the Energy Efficiency in New Buildings - Building Energy ...

Shaping the Energy Efficiency in New Buildings - Building Energy ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

PNNL-122267<strong>Shap<strong>in</strong>g</strong> <strong>the</strong> <strong>Energy</strong> <strong>Efficiency</strong> <strong>in</strong><strong>New</strong> Build<strong>in</strong>gsA Comparison of Build<strong>in</strong>g <strong>Energy</strong> Codes <strong>in</strong> <strong>the</strong>Asia-Pacific RegionM EvansB ShuiA DelgadoSeptember 2009


DISCLAIMERThis report was prepared as an account of work sponsored by an agency of <strong>the</strong> UnitedStates Government. Nei<strong>the</strong>r <strong>the</strong> United States Government nor any agency <strong>the</strong>reof, norBattelle Memorial Institute, nor any of <strong>the</strong>ir employees, makes any warranty,express or implied, or assumes any legal liability or responsibility for <strong>the</strong>accuracy, completeness, or usefulness of any <strong>in</strong>formation, apparatus, product, orprocess disclosed, or represents that its use would not <strong>in</strong>fr<strong>in</strong>ge privately ownedrights. Reference here<strong>in</strong> to any specific commercial product, process, or service bytrade name, trademark, manufacturer, or o<strong>the</strong>rwise does not necessarily constitute orimply its endorsement, recommendation, or favor<strong>in</strong>g by <strong>the</strong> United States Governmentor any agency <strong>the</strong>reof, or Battelle Memorial Institute. The views and op<strong>in</strong>ions ofauthors expressed here<strong>in</strong> do not necessarily state or reflect those of <strong>the</strong> United StatesGovernment or any agency <strong>the</strong>reof.PACIFIC NORTHWEST NATIONAL LABORATORYoperated byBATTELLEfor <strong>the</strong>UNITED STATES DEPARTMENT OF ENERGYunder Contract DE-AC05-76RL018302


<strong>Shap<strong>in</strong>g</strong> <strong>the</strong> <strong>Energy</strong> <strong>Efficiency</strong> <strong>in</strong> <strong>New</strong>Build<strong>in</strong>gsA Comparison of Build<strong>in</strong>g <strong>Energy</strong> Codes <strong>in</strong> <strong>the</strong>Asia-Pacific RegionM EvansB ShuiA DelgadoPacific Northwest National LaboratoryWith support from <strong>the</strong> U.S. Department of <strong>Energy</strong>September 20093


esidential build<strong>in</strong>gs, while <strong>the</strong> residential build<strong>in</strong>g codes <strong>in</strong>clude low-rise multi-familyresidential build<strong>in</strong>gs. In Ch<strong>in</strong>a, <strong>the</strong> residential standards regulate multi-family residences.This difference is important because, typically, commercial build<strong>in</strong>g requirements aresomewhat more complex and cover more issues than those for residential build<strong>in</strong>gs.Specific RequirementsThe specific energy efficiency requirements for new build<strong>in</strong>gs vary between countries.For example, regard<strong>in</strong>g light<strong>in</strong>g efficiency requirements <strong>in</strong> commercial or large build<strong>in</strong>gs<strong>in</strong> <strong>the</strong> APP region, Australia has <strong>the</strong> most str<strong>in</strong>gent requirements (7 to 10 watts per squaremeter), followed by India and <strong>the</strong> United States (both 10.8 to 11.8 watts per square meter),and Ch<strong>in</strong>a (11 watts per square meter). Japan and <strong>the</strong> Republic of Korea (South Korea)do not regulate light<strong>in</strong>g power density per se, although <strong>the</strong>y regulate o<strong>the</strong>r aspects oflight<strong>in</strong>g efficiency. It is more difficult to compare energy efficiency requirements for <strong>the</strong>build<strong>in</strong>g envelope because of vary<strong>in</strong>g climate conditions and construction practices.When compar<strong>in</strong>g specific requirements for build<strong>in</strong>g components <strong>in</strong> similar climate zones,no s<strong>in</strong>gle APP country consistently has <strong>the</strong> strongest requirements. India has particularlystr<strong>in</strong>gent requirements for walls, and <strong>in</strong> warm climate zones, it has <strong>the</strong> most str<strong>in</strong>gentrequirements <strong>in</strong> this area. Japan has <strong>the</strong> most str<strong>in</strong>gent requirements for w<strong>in</strong>dows <strong>in</strong>commercial build<strong>in</strong>gs, while <strong>in</strong> <strong>the</strong> United States requirements for roofs of s<strong>in</strong>gle-familyhomes are particularly strong.It is important, however, to consider <strong>the</strong> specific requirements <strong>in</strong> context. A highenforcement rate can have a larger impact on build<strong>in</strong>g energy efficiency than a smallimprovement <strong>in</strong> <strong>the</strong> requirements. Also, <strong>the</strong> requirements are based on <strong>the</strong> ratedefficiency of <strong>the</strong> build<strong>in</strong>g components. Differences between countries <strong>in</strong> test protocolsused to rate <strong>the</strong> efficiency of <strong>the</strong>se components may result <strong>in</strong> higher or lower rat<strong>in</strong>gs forequipment that objectively has very similar efficiency. A comprehensive approach tobuild<strong>in</strong>g energy codes creates <strong>the</strong> most significant improvements <strong>in</strong> energy efficiency.Means of Atta<strong>in</strong><strong>in</strong>g ComplianceBuild<strong>in</strong>g energy standards typically provide property owners some flexibility <strong>in</strong> meet<strong>in</strong>g<strong>the</strong> energy efficiency requirements. This is important because <strong>the</strong> standard can be morestr<strong>in</strong>gent without imp<strong>in</strong>g<strong>in</strong>g too severely on <strong>the</strong> ability of property owners to adaptbuild<strong>in</strong>gs to <strong>the</strong>ir needs. There are several approaches to provid<strong>in</strong>g this flexibility. Inmany countries <strong>in</strong>clud<strong>in</strong>g India, <strong>the</strong> United States, Canada and Australia, <strong>the</strong> codes havefour classes of requirements. The first are mandatory requirements that must be satisfiedregardless of any o<strong>the</strong>r factors for a build<strong>in</strong>g to be considered <strong>in</strong> compliance. Themajority of <strong>the</strong>se codes are <strong>the</strong>n made up of prescriptive requirements that are similar to<strong>the</strong> mandatory requirements <strong>in</strong> that <strong>the</strong>y provide specific values and details. However,build<strong>in</strong>g designers may be allowed to “trade-off” some of <strong>the</strong> prescriptive requirementswith o<strong>the</strong>rs regard<strong>in</strong>g <strong>the</strong> build<strong>in</strong>g envelope. The codes <strong>the</strong>n provide rules on what can betraded-off and how. F<strong>in</strong>ally, <strong>the</strong>se codes also provide an option for compliance based onbuild<strong>in</strong>g energy performance <strong>in</strong>stead of <strong>the</strong> prescriptive requirements. This last optionallows a build<strong>in</strong>g designer to <strong>in</strong>stall less energy-efficient w<strong>in</strong>dows but a more energy-5


efficient air condition<strong>in</strong>g system, for example, if <strong>the</strong> total designed energy use fallswith<strong>in</strong> <strong>the</strong> required norms. There are several approaches to establish<strong>in</strong>g <strong>the</strong> basel<strong>in</strong>e forcomparison under <strong>the</strong> build<strong>in</strong>g energy performance method. The United States uses costas its reference metric, while some o<strong>the</strong>r countries base <strong>the</strong> reference metric on energyconsumption.South Korea and Japan take a different approach, establish<strong>in</strong>g both mandatoryrequirements and a po<strong>in</strong>t system for a whole range of energy issues related to build<strong>in</strong>gs.Each new build<strong>in</strong>g must have a m<strong>in</strong>imum number of po<strong>in</strong>ts ei<strong>the</strong>r <strong>in</strong> total or by category.Build<strong>in</strong>gs that exceed <strong>the</strong> m<strong>in</strong>imum po<strong>in</strong>t requirement may be eligible for certa<strong>in</strong> benefits,such as relaxation of some zon<strong>in</strong>g rules.Enforcement SystemsEnforcement is critical for <strong>the</strong> standard to have an effect. Not all countries havemandatory build<strong>in</strong>g energy standards. India, for example, has a voluntary code. Japan’sstandards are also technically voluntary, although Japan has recently adopted penaltiesfor non-compliance that blur this dist<strong>in</strong>ction. The United States, Canada and Australia alladopt build<strong>in</strong>g standards at <strong>the</strong> local level. Not all jurisdictions <strong>in</strong> <strong>the</strong> United States andCanada have adopted <strong>the</strong>ir nation’s model build<strong>in</strong>g energy codes. Ch<strong>in</strong>a has mandatorynational codes, but prov<strong>in</strong>ces have <strong>the</strong> option to adopt more str<strong>in</strong>gent local codes.Some important issues regard<strong>in</strong>g enforcement and <strong>the</strong> related impact of <strong>the</strong> code onenergy use <strong>in</strong>clude: <strong>the</strong> po<strong>in</strong>t of compliance (design and/or construction stage), howbuild<strong>in</strong>gs are reviewed or <strong>in</strong>spected and by whom, penalties and o<strong>the</strong>r <strong>in</strong>centives forcompliance, tra<strong>in</strong><strong>in</strong>g and <strong>in</strong>formation on <strong>the</strong> code, compliance tools such as codecompliance software and <strong>in</strong>spection checklists, and equipment and material test<strong>in</strong>g andrat<strong>in</strong>gs.In <strong>the</strong> United States, Canada, Australia and South Korea, for example, <strong>the</strong> build<strong>in</strong>gdesign must be approved, and <strong>in</strong>spectors check <strong>the</strong> build<strong>in</strong>g for compliance at least oncedur<strong>in</strong>g construction. In Japan, <strong>the</strong> reviews only occur at <strong>the</strong> build<strong>in</strong>g design stage. Ch<strong>in</strong>auses a comb<strong>in</strong>ation of government employees and certified companies to check build<strong>in</strong>gdesigns and <strong>in</strong>spect <strong>the</strong> build<strong>in</strong>gs for compliance. There is no s<strong>in</strong>gle answer as to whichsystem produces <strong>the</strong> highest level of compliance. For example, Japanese officials believethat Japan atta<strong>in</strong>s a high level of compliance <strong>in</strong> actual construction because Japan has avery well developed system of tra<strong>in</strong><strong>in</strong>g and <strong>in</strong>formation dissem<strong>in</strong>ation on <strong>the</strong> build<strong>in</strong>genergy standards. Anecdotal evidence <strong>in</strong> <strong>the</strong> United States and o<strong>the</strong>r countries <strong>in</strong>dicatesthat <strong>in</strong>spections do play an important role <strong>in</strong> atta<strong>in</strong><strong>in</strong>g high levels of compliance. The U.S.Department of <strong>Energy</strong> is now develop<strong>in</strong>g methodologies to measure and trackcompliance.The str<strong>in</strong>gency of <strong>the</strong> national system for test<strong>in</strong>g materials and equipment for <strong>the</strong>ir energyefficiency properties can also have a marked impact on <strong>the</strong> f<strong>in</strong>al energy consumption of abuild<strong>in</strong>g. Most countries have a system of certified laboratories that test materials andequipment (like w<strong>in</strong>dows and air conditioners) and rate <strong>the</strong>m for efficiency. These rat<strong>in</strong>gs6


<strong>the</strong>n determ<strong>in</strong>e if <strong>the</strong> equipment <strong>in</strong> a build<strong>in</strong>g meets <strong>the</strong> build<strong>in</strong>g energy standard. Test<strong>in</strong>gprocedures vary between countries, and <strong>the</strong>re is anecdotal evidence that even <strong>in</strong> countrieswith well established systems, rat<strong>in</strong>gs can differ by 10% or more based on <strong>the</strong> test<strong>in</strong>gprocedures.Build<strong>in</strong>g energy standard compliance rates vary significantly between countries. Whatconstitutes compliance may also vary, and not all countries consistently publishcompliance data. That said, countries usually have lower compliance rates soon after <strong>the</strong>yadopt or revise a standard, and when <strong>the</strong>ir enforcement system is not fully developed.ConclusionsAll APP countries have expressed a desire to improve energy efficiency <strong>in</strong> new build<strong>in</strong>gs.More efficient new build<strong>in</strong>gs will mean lower operat<strong>in</strong>g costs and emissions. Build<strong>in</strong>gscan last 30 to 50 years or longer, and much of <strong>the</strong> energy consumption footpr<strong>in</strong>t is setwith <strong>the</strong> <strong>in</strong>itial design and construction of <strong>the</strong> build<strong>in</strong>g. Thus, build<strong>in</strong>g energy codes arean important tool for ensur<strong>in</strong>g wise energy use. APP countries stand to ga<strong>in</strong> by learn<strong>in</strong>gfrom <strong>the</strong> experience with build<strong>in</strong>g energy codes <strong>in</strong> o<strong>the</strong>r countries. This goes beyond justlook<strong>in</strong>g at specific requirements, where certa<strong>in</strong>ly <strong>the</strong>re are measurable differences.Countries can also learn from <strong>the</strong> implementation strategies and programs employedelsewhere. For example, Japan has an extensive system of public outreach and tra<strong>in</strong><strong>in</strong>gthat helps raise enforcement rates. O<strong>the</strong>r countries, such as <strong>the</strong> United States andAustralia, have developed tools like software and checklists to help local jurisdictionswith enforcement. South Korea and Japan have taken an <strong>in</strong>novative approach toreward<strong>in</strong>g build<strong>in</strong>gs and build<strong>in</strong>g owners that go beyond <strong>the</strong> basic standards by us<strong>in</strong>g apo<strong>in</strong>t system. This allows <strong>the</strong> standard to <strong>in</strong>clude items such as renewable energy as anoption. Ch<strong>in</strong>a has also experimented with rewards at <strong>the</strong> local level, and <strong>the</strong> United Stateshas tax credits for exceed<strong>in</strong>g <strong>the</strong> standards.This comparative report, and <strong>the</strong> seven country reports upon which it was based, can helpcountries understand <strong>the</strong> options and approaches to build<strong>in</strong>g energy codes that haveworked elsewhere. It provides policy makers a menu of options to explore <strong>in</strong>streng<strong>the</strong>n<strong>in</strong>g <strong>the</strong>ir build<strong>in</strong>g energy code programs.7


ContentsForeword ....................................................................................................................... 12Acknowledgements ....................................................................................................... 131 Introduction and Background ............................................................................... 141.1 Importance of Build<strong>in</strong>g <strong>Energy</strong> Codes ............................................................. 141.2 Economics, <strong>Energy</strong> and Carbon Emissions ...................................................... 141.3 Build<strong>in</strong>g Sectors ................................................................................................ 151.4 Build<strong>in</strong>g <strong>Energy</strong> Use ......................................................................................... 161.5 Build<strong>in</strong>g <strong>Energy</strong> Codes and Standards ............................................................. 171.6 Residential and Commercial Build<strong>in</strong>gs ............................................................ 181.7 Construction Trends .......................................................................................... 191.8 Climate Zones ................................................................................................... 212 Development History .............................................................................................. 222.1 Australia ............................................................................................................ 242.2 Canada............................................................................................................... 242.3 Ch<strong>in</strong>a ................................................................................................................. 252.4 India .................................................................................................................. 262.5 Japan ................................................................................................................. 272.6 South Korea ...................................................................................................... 282.7 The United States .............................................................................................. 292.8 Summary ........................................................................................................... 303 Comparison of <strong>the</strong> Structure and Requirements of Build<strong>in</strong>g <strong>Energy</strong> Codes .... 303.1 Structural Comparison ...................................................................................... 303.2 Size Threshold for Compliance <strong>in</strong> <strong>New</strong> Build<strong>in</strong>gs ........................................... 333.3 Build<strong>in</strong>g Envelope ............................................................................................ 343.4 HVAC ............................................................................................................... 463.5 Service Water Heat<strong>in</strong>g ...................................................................................... 493.6 Light<strong>in</strong>g ............................................................................................................. 523.7 Electric Power ................................................................................................... 533.8 Trade-off and Build<strong>in</strong>g Performance Approach ............................................... 543.9 Renovations............................................................................................................. 563.10 Operations and Ma<strong>in</strong>tenance................................................................................. 578


4 Enforcement and Compliance ............................................................................... 574.1 Enforcement Framework .................................................................................. 574.2 Test<strong>in</strong>g and Rat<strong>in</strong>g ............................................................................................ 604.3 Compliance Software and Tools ....................................................................... 614.4 Tra<strong>in</strong><strong>in</strong>g and Public Information ....................................................................... 654.5 Some Innovative Programs and Summary ........................................................ 665 Conclusions .............................................................................................................. 68Appendix A – Enforcement Framework....................................................................... 69Appendix B – Build<strong>in</strong>g Test<strong>in</strong>g Agencies and Examples of Test Standards <strong>in</strong> eachAPP Country ................................................................................................................... 73Appendix C – Compliance Software ............................................................................. 82Appendix D – Tra<strong>in</strong><strong>in</strong>g and Public Information .......................................................... 87Acronyms ......................................................................................................................... 92References ........................................................................................................................ 949


List of TablesTable 1 GDP, Primary <strong>Energy</strong> Consumption, and Carbon Emissions <strong>in</strong> APP Countries ............................. 15Table 2 Build<strong>in</strong>g <strong>Energy</strong> Use <strong>in</strong> APP Countries, 2005 (<strong>in</strong> thousand tons of oil equivalent) ........................ 16Table 3 Annual Growth Rate (%) <strong>in</strong> Build<strong>in</strong>g <strong>Energy</strong> Use <strong>in</strong> APP Countries, 1995-2005 .......................... 17Table 4 APP Build<strong>in</strong>g <strong>Energy</strong> Codes and Standards Studied <strong>in</strong> this Report ................................................ 17Table 5 Def<strong>in</strong>ition of Residential and Commercial Build<strong>in</strong>gs <strong>in</strong> APP Countries ........................................ 18Table 6 Timel<strong>in</strong>e for Build<strong>in</strong>g <strong>Energy</strong> Codes Development <strong>in</strong> APP Countries, 1975-2007 ........................ 23Table 7 Structural Comparison of Build<strong>in</strong>g <strong>Energy</strong> Codes <strong>in</strong> APP Countries ............................................. 32Table 8 M<strong>in</strong>imum Size of Build<strong>in</strong>gs Regulated by Build<strong>in</strong>g <strong>Energy</strong> Code .................................................. 33Table 9 Build<strong>in</strong>g Envelope <strong>in</strong> Build<strong>in</strong>g <strong>Energy</strong> Codes of APP Countries .................................................... 34Table 10 Climate Zones and Cities Covered <strong>in</strong> <strong>the</strong> Comparison of Maximum U-factor for Build<strong>in</strong>gEnvelope <strong>in</strong> APP Countries................................................................................................................. 37Table 11 Thermal Characteristics of Roofs, Walls, Floors and W<strong>in</strong>dows <strong>in</strong> <strong>the</strong> Hot Zone .......................... 39Table 12 Thermal Characteristics of Roofs, Walls, Floors and W<strong>in</strong>dows <strong>in</strong> <strong>the</strong> Warm Zone ...................... 41Table 13 Thermal Characteristics of Roofs, Walls, Floors and W<strong>in</strong>dows <strong>in</strong> <strong>the</strong> Cool Zone ........................ 43Table 14 Thermal Characteristics of Roofs, Walls, Floors and W<strong>in</strong>dows <strong>in</strong> <strong>the</strong> Very Cold Zone ............... 44Table 15 HVAC <strong>in</strong> <strong>the</strong> Build<strong>in</strong>g <strong>Energy</strong> Codes of Canada, Ch<strong>in</strong>a, India and <strong>the</strong> United States .................. 47Table 16 HVAC <strong>in</strong> Japan’s Build<strong>in</strong>g <strong>Energy</strong> Codes .................................................................................... 48Table 17 The Ma<strong>in</strong> Focus of HVAC Requirements <strong>in</strong> South Korea’s Build<strong>in</strong>g <strong>Energy</strong> Code ..................... 48Table 18 Equipment Performance Standards for Air-cooled Unitary Air Conditioners – ElectricallyOperated (Except Packaged Term<strong>in</strong>al Air Conditioners and Room Air Conditioners) ...................... 49Table 19 M<strong>in</strong>imum Efficiencies for Centrifugal Chillers ............................................................................. 49Table 20 Major Issues Covered under Service Water Heat<strong>in</strong>g <strong>in</strong> Build<strong>in</strong>g <strong>Energy</strong> Codes <strong>in</strong> APP Countries............................................................................................................................................................ 50Table 21 Service Water Heat<strong>in</strong>g Equipment Performance Standards .......................................................... 50Table 22 Maximum Illum<strong>in</strong>ation Power Density <strong>in</strong> Offices (W/m 2 ) ............................................................ 52Table 23 Major Covered Issues <strong>in</strong> Electric Power of Build<strong>in</strong>g <strong>Energy</strong> Codes <strong>in</strong> APP Countries .............. 53Table 24 Referenced Test Standards <strong>in</strong> Codes ........................................................................................... 61Table 25 Compliance Software .................................................................................................................. 63Table 26 Compliance Tools ........................................................................................................................ 6310


List of FiguresFigure 1 Comparison of Roof U-factor Requirements <strong>in</strong> <strong>the</strong> Hot Zone ....................................................... 39Figure 2 Comparison of U-factor Requirements for External Walls <strong>in</strong> <strong>the</strong> Warm Zone .............................. 40Figure 3 Comparison of W<strong>in</strong>dow U-factor Requirements <strong>in</strong> <strong>the</strong> Cool Zone ................................................ 42Figure 4 Comparison of Wall U-factor Requirements <strong>in</strong> <strong>the</strong> Very Cold Zone ............................................. 44Figure 5 Maximum U-factors <strong>in</strong> Residential Roofs by Climate Zone .......................................................... 45Figure 6 Maximum U-factors <strong>in</strong> Residential Walls by Climate Zone .......................................................... 4611


ForewordBuild<strong>in</strong>gs account for about 32% of all energy consumption globally and a significantshare of greenhouse gas emissions. Build<strong>in</strong>g energy codes help ensure that new build<strong>in</strong>gsuse energy efficiently, and this can reduce build<strong>in</strong>g energy use by 50% or more comparedto build<strong>in</strong>gs designed without energy efficiency <strong>in</strong> m<strong>in</strong>d. This is important becausebuild<strong>in</strong>gs typically last 30-50 years, and it is much less expensive and time-consum<strong>in</strong>g todesign for energy efficiency than to retrofit a build<strong>in</strong>g later. Based on <strong>the</strong> experience of<strong>the</strong> Asia-Pacific region, it is clear that build<strong>in</strong>g energy codes, when implemented, saveenergy and improve comfort <strong>in</strong> new build<strong>in</strong>gs. By design, most build<strong>in</strong>g energy codes arecost-effective, sav<strong>in</strong>g consumers significant amounts of money on <strong>the</strong>ir energy bills.The Asia-Pacific Partnership on Clean Development and Climate (APP) is a publicprivatecollaboration to accelerate <strong>the</strong> development and deployment of clean energytechnologies. APP partners <strong>in</strong>clude Australia, Canada, Ch<strong>in</strong>a, India, Japan, South Koreaand <strong>the</strong> United States. APP countries account for more than half of <strong>the</strong> global economy,energy consumption, and greenhouse gas emissions. APP’s Build<strong>in</strong>gs and ApplianceTask Force (BATF) provides a forum for APP partners to work toge<strong>the</strong>r on energyefficiency <strong>in</strong> build<strong>in</strong>gs and appliances. This report was prepared under <strong>the</strong> framework ofBATF, <strong>in</strong> particular a BATF project called “Survey build<strong>in</strong>g energy codes and developscenarios for reduc<strong>in</strong>g energy consumption through energy code enhancement <strong>in</strong> APPcountries” (BATF-06-24).At <strong>the</strong> request of <strong>the</strong> U.S. Department of <strong>Energy</strong>, <strong>the</strong> Pacific Northwest NationalLaboratory’s Jo<strong>in</strong>t Global Change Research Institute has prepared a series of reportssurvey<strong>in</strong>g build<strong>in</strong>g energy codes <strong>in</strong> <strong>the</strong> seven APP countries. This report comparesbuild<strong>in</strong>g energy codes <strong>in</strong> <strong>the</strong> APP countries, look<strong>in</strong>g at issues rang<strong>in</strong>g from <strong>the</strong> history ofcode development to <strong>the</strong> specific requirements and <strong>the</strong> enforcement framework. Theo<strong>the</strong>r reports <strong>in</strong> this series are country reports, provid<strong>in</strong>g an overview of <strong>the</strong> build<strong>in</strong>genergy codes and related policies <strong>in</strong> each APP country. They are available at:www.asiapacificpartnership.org/english/tf_app_build<strong>in</strong>g_codecountry_reports.aspx.12


AcknowledgementsThis report owes its existence to <strong>the</strong> Asia-Pacific Partnership on Clean Development andClimate. We would like to thank all <strong>the</strong> APP partner countries and experts whocollaborated on this project. We are particularly grateful to Dr. Seung-Eon Lee at <strong>the</strong>Korean Institute of Construction Technology for his oversight of <strong>the</strong> APP project underwhich this report was prepared (BATF 06-24). We would also like to thank MarkG<strong>in</strong>sberg, Jean Boul<strong>in</strong> and Marc LaFrance from <strong>the</strong> U.S. Department of <strong>Energy</strong> for <strong>the</strong>irleadership and f<strong>in</strong>ancial support of this work.Diana Shankle, manager of <strong>the</strong> PNNL Build<strong>in</strong>g <strong>Energy</strong> Codes Program, has providedmoral and <strong>in</strong>tellectual support for this project. Mark Halverson reviewed this report andRosal<strong>in</strong>d Schrempf edited it. We would also like to express our gratitude to several o<strong>the</strong>r<strong>in</strong>dividuals who supported or participated <strong>in</strong> <strong>the</strong> APP build<strong>in</strong>g energy code assessment <strong>in</strong>various capacities <strong>in</strong>clud<strong>in</strong>g Anurag Bajpai, Haewon Chon, Jim Clark, Julie Claydon,Suzanne Deschennes, François Dubrous, Joe Huang, Satish Kumar, Ravi Kapoor, KayKill<strong>in</strong>gstad, Wei Jiang, Michel Lamanque, Paulette Land, Siwei Lang, Elly Lee, HaiyanL<strong>in</strong>, B<strong>in</strong>g Liu, Elizabeth Malone, Bip<strong>in</strong> Shah, Rob<strong>in</strong> S<strong>in</strong>ha, Sriram Somasundaram, BoSong, Kim Swier<strong>in</strong>ga, Tomoko Tagaki, X<strong>in</strong>chun (Steven) Wang, Xiaojiao Zhu andseveral anonymous reviewers from <strong>the</strong> APP countries.13


1 Introduction and Background1.1 Importance of Build<strong>in</strong>g <strong>Energy</strong> CodesBuild<strong>in</strong>g energy codes are a proven and cost-effective means of improv<strong>in</strong>g energyefficiency <strong>in</strong> new build<strong>in</strong>gs (IEA 2007). Build<strong>in</strong>gs account for about one-third of energyconsumption globally and <strong>in</strong> <strong>the</strong> APP countries 1 . Several APP countries are experienc<strong>in</strong>ghigh rates of growth <strong>in</strong> new build<strong>in</strong>gs, particularly Ch<strong>in</strong>a and India. Ch<strong>in</strong>a, for example,will likely account for 50% of all new build<strong>in</strong>g space <strong>in</strong> <strong>the</strong> world through 2020. Becausemost of <strong>the</strong> energy “footpr<strong>in</strong>t” of a build<strong>in</strong>g is set with its <strong>in</strong>itial design, build<strong>in</strong>g energycodes provide essential leverage for improv<strong>in</strong>g build<strong>in</strong>g energy efficiency. In <strong>the</strong> UnitedStates, for example, <strong>the</strong> U.S. Department of <strong>Energy</strong>’s Build<strong>in</strong>g <strong>Energy</strong> Codes Program isestimated to have saved $30-50 for every dollar <strong>the</strong> program has spent, thus sav<strong>in</strong>g over$1 billion <strong>in</strong> energy costs <strong>in</strong> a year. This equates to $7 billion <strong>in</strong> energy sav<strong>in</strong>gs <strong>in</strong>residential build<strong>in</strong>gs through 2010 and $3.3 billion <strong>in</strong> energy sav<strong>in</strong>gs <strong>in</strong> commercialbuild<strong>in</strong>gs. 2This report beg<strong>in</strong>s with an overview of <strong>the</strong> build<strong>in</strong>g sectors <strong>in</strong> APP countries. Chapter 2<strong>the</strong>n provides background on <strong>the</strong> history of build<strong>in</strong>g energy codes <strong>in</strong> APP countries,outl<strong>in</strong><strong>in</strong>g <strong>the</strong>ir progress <strong>in</strong> improv<strong>in</strong>g <strong>the</strong>ir build<strong>in</strong>g energy codes and implementationprograms <strong>in</strong> recent decades. Chapter 3 compares <strong>the</strong> specific details of build<strong>in</strong>g energycodes <strong>in</strong> <strong>the</strong> APP region <strong>in</strong>clud<strong>in</strong>g <strong>the</strong> structure of <strong>the</strong> codes, issues <strong>the</strong>y address, and <strong>the</strong>str<strong>in</strong>gency of specific requirements. Chapter 4 highlights how <strong>the</strong> APP countries haveapproached compliance and implementation and covers a range of issues such as <strong>the</strong>enforcement framework, test protocols, compliance tools and public <strong>in</strong>formation. Chapter5 provides conclusions. The report seeks to provide policy makers and build<strong>in</strong>g energycode officials with <strong>in</strong>sights <strong>in</strong>to successful approaches for a range of build<strong>in</strong>g energycode issues. In this way, APP countries can learn from each o<strong>the</strong>r as <strong>the</strong>y address <strong>the</strong>challenges of improv<strong>in</strong>g energy efficiency <strong>in</strong> new build<strong>in</strong>gs to address grow<strong>in</strong>g concernsabout climate change and energy security.1.2 Economics, <strong>Energy</strong> and Carbon EmissionsThe seven APP countries accounted for 45% of <strong>the</strong> world’s population (<strong>in</strong> 2007), 48% ofits gross domestic product (GDP) 3 , 51% of its primary energy consumption (<strong>in</strong> 2005) and54% of its carbon dioxide emissions (<strong>in</strong> 2005). Four APP countries (<strong>the</strong> United States,Ch<strong>in</strong>a, Japan and India) are among <strong>the</strong> world’s top five world economies, and are among<strong>the</strong> largest primary energy consumers and carbon emitters (Table 1).1 The Asia-Pacific Partnership for Clean Development and Climate <strong>in</strong>cludes seven countries: Australia,Canada, Ch<strong>in</strong>a, Japan, South Korea, India and <strong>the</strong> United States.2 For more <strong>in</strong>formation, please see http://www.energycodes.gov/whatwedo/<strong>in</strong>dex.stm.3 The GDP is <strong>in</strong> purchas<strong>in</strong>g power parity (PPP) for 2007.14


Table 1 GDP, Primary <strong>Energy</strong> Consumption, and Carbon Emissions <strong>in</strong> APP CountriesGDP(2007)GDP(PPP <strong>in</strong> 2007)CO 2 Emissions(2006)Primary <strong>Energy</strong>Consumption (2006)CurrentCurrentPrices <strong>in</strong>MillionMillion TonsWorld International WorldWorldWorldU.S.Metricof OilRank<strong>in</strong>g Dollars, Rank<strong>in</strong>gDollars,Billions 1Billions 2Tons 3 Rank<strong>in</strong>gRank<strong>in</strong>gEquivalentAUS 909 15 763 17 417 16 5.6 18CAN 1,436 9 1,270 13 614 7 14.0 7CHN 3,280 4 7,035 2 6,018 1 73.8 2IND 1,101 12 2,997 4 1,293 4 17.7 5JAP 4,382 2 4,292 3 1,247 5 22.8 4KOR 970 14 1,202 14 515 9 9.4 11USA 13,808 1 13,808 1 5,903 2 99.9 1Sources: IMF 2008 and EIA 2008aAUS is Australia, CAN is Canada, CHN is Ch<strong>in</strong>a, IND is India, JAP is Japan, KOR is SouthKorea and USA is <strong>the</strong> United States.1.3 Build<strong>in</strong>g SectorsWith 45% of <strong>the</strong> world’s population, APP countries also contribute to a large share of <strong>the</strong>global build<strong>in</strong>g area floor space.Build<strong>in</strong>gs <strong>in</strong> Canada accounted for total floor space of 2.2 billion square meters <strong>in</strong> 2005,71% of which was <strong>in</strong> residential build<strong>in</strong>gs and <strong>the</strong> rema<strong>in</strong>der <strong>in</strong> commercial build<strong>in</strong>gs(OEE, 2007). Most dwell<strong>in</strong>gs <strong>in</strong> Canada are detached s<strong>in</strong>gle-family houses (67% ofresidential floor space <strong>in</strong> 2005), followed by apartments (21%), attached s<strong>in</strong>gle-familyhouses (10%) and mobile homes (2%). There are four major uses of commercialbuild<strong>in</strong>gs <strong>in</strong> Canada: offices (35% of commercial floor space), retail trade (17%),educational service (14%), and health care and social assistance (9%).In Ch<strong>in</strong>a, by <strong>the</strong> end of 2003 exist<strong>in</strong>g build<strong>in</strong>gs accounted for 38 billion square meters offloor space, 37% of which was <strong>in</strong> urban areas. In recent years, Ch<strong>in</strong>a has been add<strong>in</strong>g 1.8to 2 billion square meters of floor space annually, mak<strong>in</strong>g it <strong>the</strong> world’s largest marketfor new construction (Wu and Liu 2007; Wu et al. 2007). Of <strong>the</strong>se new build<strong>in</strong>gs, 60%are residential, 10% are <strong>in</strong>dustrial, and 30% are public or commercial 4 (Lang 2005).In 2006, <strong>the</strong>re were 32 million residential build<strong>in</strong>gs <strong>in</strong> Japan total<strong>in</strong>g 3.4 billion squaremeters of floor space. Residential build<strong>in</strong>gs consist of detached s<strong>in</strong>gle-family houses(85% of total residential floor space), houses <strong>in</strong> <strong>the</strong> agriculture sector (6%),condom<strong>in</strong>iums (5%) and mixed-use houses (4%). Japan also had 13 million non-4 This report uses <strong>the</strong> term “public” build<strong>in</strong>gs as def<strong>in</strong>ed <strong>in</strong> Ch<strong>in</strong>a’s regulations, which is similar to <strong>the</strong> ideaof commercial build<strong>in</strong>gs <strong>in</strong> o<strong>the</strong>r countries. Public build<strong>in</strong>gs <strong>in</strong> Ch<strong>in</strong>a <strong>in</strong>clude government build<strong>in</strong>gs butalso o<strong>the</strong>r private build<strong>in</strong>gs used for commerce or services. The term “public” build<strong>in</strong>gs <strong>in</strong> Ch<strong>in</strong>a does not<strong>in</strong>clude residential build<strong>in</strong>gs.15


esidential build<strong>in</strong>gs <strong>in</strong> 2006, with total floor space of 0.7 billion square meters. Nonresidentialbuild<strong>in</strong>gs <strong>in</strong>clude attached build<strong>in</strong>gs (60% of <strong>the</strong> total floor space ofcommercial build<strong>in</strong>gs <strong>in</strong> 2006), factories and warehouses (15%), mixed-use build<strong>in</strong>gs(o<strong>the</strong>r than houses) (10%), offices, banks and retails (9%), and temples and religiousbuild<strong>in</strong>gs (4%) (M<strong>in</strong>istry of Internal Affairs and Communications, 2008).In <strong>the</strong> United States, <strong>the</strong>re were 5 million commercial build<strong>in</strong>gs <strong>in</strong> 2003 total<strong>in</strong>g 6.7billion square meters of floor space. Commercial build<strong>in</strong>gs <strong>in</strong>clude, but are not limited to,offices (17% of <strong>the</strong> total floor space of commercial build<strong>in</strong>gs <strong>in</strong> 2003), mercantile space(16%), warehouses and storage (14%), educational build<strong>in</strong>gs (14%) and lodg<strong>in</strong>g (7%)(EIA 2006). In 2005, <strong>the</strong>re were 111 million hous<strong>in</strong>g units <strong>in</strong> <strong>the</strong> United States total<strong>in</strong>g25.8 billion square meters of floor space. Residential build<strong>in</strong>gs <strong>in</strong>clude detached s<strong>in</strong>glefamilyhouses (89% of total floor space of residential build<strong>in</strong>gs <strong>in</strong> 2005) 5 , multi-familyapartments (9%) 6 and mobile homes (3%) (EIA, 2008b).1.4 Build<strong>in</strong>g <strong>Energy</strong> UseAccord<strong>in</strong>g to International <strong>Energy</strong> Agency data published <strong>in</strong> 2007, <strong>the</strong> APP countriesaccounted for 48% of <strong>the</strong> world total for build<strong>in</strong>g energy use <strong>in</strong> 2005, 45% for residentialenergy use and 59% of <strong>the</strong> commercial use. The United States, Ch<strong>in</strong>a and India are <strong>the</strong>top three largest build<strong>in</strong>g energy users, while Ch<strong>in</strong>a and <strong>the</strong> United States are <strong>the</strong> largestresidential and commercial energy users, respectively (Table 2).Table 2 Build<strong>in</strong>g <strong>Energy</strong> Use <strong>in</strong> APP Countries, 2005 (<strong>in</strong> thousand tons of oil equivalent)Rank Total Residential Commercial1 USA 472,514 Ch<strong>in</strong>a 331,502 USA 202,7012 Ch<strong>in</strong>a 373,078 USA 269,813 Japan 61,5053 India 168,771 India 156,840 Ch<strong>in</strong>a 41,5764 Japan 116,248 Japan 54,743 Canada 31,0855 Canada 62, 437 Canada 31,352 South Korea 19,2316 South Korea 37,679 South Korea 18, 448 India 11,9317 Australia 15,857 Australia 10,041 Australia 5,816% of <strong>the</strong> World 48% % of <strong>the</strong> World 45% % of <strong>the</strong> World 59%Source: IEA 2007Build<strong>in</strong>g energy consumption is a top f<strong>in</strong>al energy end use for each APP country. Forexample, <strong>in</strong> India, Ch<strong>in</strong>a, and Canada build<strong>in</strong>g energy use was <strong>the</strong> largest end use <strong>in</strong> 2005.India’s 47% f<strong>in</strong>al energy use 7 <strong>in</strong>cluded build<strong>in</strong>g energy use, 94% of which was residentialenergy use. Overall, build<strong>in</strong>g energy use <strong>in</strong> <strong>the</strong> APP region made up 31% of total f<strong>in</strong>alenergy use, compared with 32% globally.From 1995 to 2005, build<strong>in</strong>g energy use <strong>in</strong> South Korea, Australia and Ch<strong>in</strong>a postedmore rapid growth than <strong>the</strong> world average. For example, South Korea’s average annualgrowth rate for build<strong>in</strong>g energy use was 2.9%, while its annual growth rate for residential5 S<strong>in</strong>gle-family houses refer to both detached and attached houses.6 Multi-family apartments refer to both apartments <strong>in</strong> 2-4 unit build<strong>in</strong>gs and apartments <strong>in</strong> build<strong>in</strong>gs withmore than 5 units.7 F<strong>in</strong>al energy use <strong>in</strong>cludes residential and waste heat <strong>in</strong> <strong>the</strong> International <strong>Energy</strong> Agency data.16


energy use is 6.7%. Ch<strong>in</strong>a had <strong>the</strong> highest annual growth rate, 7.7%, for commercialenergy use among APP countries (Table 3).Table 3 Annual Growth Rate (%) <strong>in</strong> Build<strong>in</strong>g <strong>Energy</strong> Use <strong>in</strong> APP Countries, 1995-2005Rank Total Residential Commercial1 South Korea 2.9 South Korea 6.7 Ch<strong>in</strong>a 7.72 Australia 2.4 Australia 1.91 Australia 3.43 Ch<strong>in</strong>a 1.68 Japan 1.87 World 2.44 India 1.66 India 1.7 India 1.55 Japan 1.60 World 1.3 Japan 1.4World 1.5 Ch<strong>in</strong>a 1.1 South Korea 0.36 Canada 1.4 USA 0.8 Canada 0.07 USA 1.1 Canada 0.4 USA 0.0Source: IEA 20071.5 Build<strong>in</strong>g <strong>Energy</strong> Codes and Standards 8The dictionary def<strong>in</strong>es “code” as “a systematic statement of a body of law; especially,one given statutory force,” or “a system of pr<strong>in</strong>ciples or rules.” 9 The word “standard” isdef<strong>in</strong>ed as “a basis for comparison; a reference po<strong>in</strong>t aga<strong>in</strong>st which o<strong>the</strong>r th<strong>in</strong>gs can beevaluated.” 10 To describe m<strong>in</strong>imum requirements for energy efficiency <strong>in</strong> build<strong>in</strong>gs, mostAPP countries employ ei<strong>the</strong>r “codes” or “standards.” Some countries, such as Japan andSouth Korea, use <strong>the</strong> words “criteria” or “guidance” <strong>in</strong> describ<strong>in</strong>g <strong>the</strong>ir build<strong>in</strong>g energyrequirements (Table 4). In some countries (like <strong>the</strong> United States) <strong>the</strong> term “guidance”can <strong>in</strong>dicate a document that is not mandatory.In this report, build<strong>in</strong>g energy “codes” and “standards” are used <strong>in</strong>terchangeably.“Guidance” and “criteria” are also used for countries that use <strong>the</strong>se terms as part of <strong>the</strong>English name of <strong>the</strong>ir build<strong>in</strong>g energy standards.Table 4 APP Build<strong>in</strong>g <strong>Energy</strong> Codes and Standards Studied <strong>in</strong> this ReportBuild<strong>in</strong>g energy codes/standards/criteria/guidanceAUS Build<strong>in</strong>g Code of Australia 2007 (BCA)CAN 1. Model National <strong>Energy</strong> Code of Canada for Build<strong>in</strong>gs 1997 (MNECB)2. Model National <strong>Energy</strong> Code for Houses 1997 (MNECH)CHN 1. <strong>Energy</strong> Conservation Design Standard for <strong>New</strong> Heat<strong>in</strong>g Residential Build<strong>in</strong>gs19952. Design Standard for <strong>Energy</strong> <strong>Efficiency</strong> of Residential Build<strong>in</strong>gs <strong>in</strong> Hot Summerand Cold W<strong>in</strong>ter Zone 20013. Design Standard for <strong>Energy</strong> <strong>Efficiency</strong> of Residential Build<strong>in</strong>gs <strong>in</strong> Hot Summerand Warm W<strong>in</strong>ter Zone 20034. Design Standard for <strong>Energy</strong> <strong>Efficiency</strong> of Public Build<strong>in</strong>gs 2005IND <strong>Energy</strong> Conservation Build<strong>in</strong>g Code 2007 (ECBC)8 This report reflects <strong>the</strong> most up-to-date <strong>in</strong>formation available at <strong>the</strong> time of pr<strong>in</strong>t<strong>in</strong>g. The report may notfully reflect <strong>the</strong> 2008 and 2009 updates to <strong>the</strong> Japanese <strong>Energy</strong> Conservation Law as <strong>the</strong> complete revisedlaw was not available <strong>in</strong> English.9 For more <strong>in</strong>formation, please see www.merriam-webster.com/dictionary/code[1].10 For more <strong>in</strong>formation, please see www.websters-onl<strong>in</strong>e-dictionary.org/def<strong>in</strong>ition/standard.17


JAP 1. Criteria for Clients on <strong>the</strong> Rationalization of <strong>Energy</strong> Use for Build<strong>in</strong>gs 1999(CCREUB)2. Design and Construction Guidel<strong>in</strong>es on <strong>the</strong> Rationalization of <strong>Energy</strong> Use forHouses 1999 (DCGREUH)3. Criteria for Clients on <strong>the</strong> Rationalization of <strong>Energy</strong> Use for Houses 1999(CCREUH)KOR Build<strong>in</strong>g Design Criteria for <strong>Energy</strong> Sav<strong>in</strong>g 2008 (BDCES)Rules for Build<strong>in</strong>g Facility Criteria & O<strong>the</strong>rwise 2008 (RBFCO)USA 1. International <strong>Energy</strong> Conservation Code 2006 (IECC)2. ASHRAE Standard 90.1 - <strong>Energy</strong> Standard for Build<strong>in</strong>gs except Low-riseResidential Build<strong>in</strong>gs 2007 (ASHRAE 90.1)1.6 Residential and Commercial Build<strong>in</strong>gsAustralia, Canada, Ch<strong>in</strong>a, Japan and <strong>the</strong> United States have separate build<strong>in</strong>g energycodes for commercial and residential build<strong>in</strong>gs. India and South Korea’s build<strong>in</strong>g energycodes focus on build<strong>in</strong>gs with large energy demands (Table 5).Broadly speak<strong>in</strong>g, <strong>the</strong> residential codes <strong>in</strong> Australia, Canada and <strong>the</strong> United States covers<strong>in</strong>gle-family homes and small multi-family residences, but not large, multi-familyresidences; <strong>the</strong> latter are covered under <strong>the</strong> commercial codes. Ch<strong>in</strong>a’s residentialbuild<strong>in</strong>g energy codes refer to multi-family apartment build<strong>in</strong>gs. Japan’s residential codecovers both large and small residential build<strong>in</strong>gs. The commercial build<strong>in</strong>g energy codes<strong>in</strong> Australia, Canada and <strong>the</strong> United States cover large, conditioned build<strong>in</strong>gs, regardlessof use, while <strong>the</strong> commercial or public build<strong>in</strong>g codes <strong>in</strong> Ch<strong>in</strong>a and Japan only coverlarge build<strong>in</strong>gs used for non-residential purposes.Table 5 Def<strong>in</strong>ition of Residential and Commercial Build<strong>in</strong>gs <strong>in</strong> APP CountriesResidential Build<strong>in</strong>gsCommercial Build<strong>in</strong>gsAUS The Australian codecovers all build<strong>in</strong>g issuesso it applies to a widerange of structures. Theresidential energyefficiency provisions of<strong>the</strong> code apply primarilyto: detached and attacheds<strong>in</strong>gle-family houses, andboard<strong>in</strong>g houses, guesthouses and hostels with atotal area not exceed<strong>in</strong>g300 m 2 (BCA 2007).CANCHNS<strong>in</strong>gle-family houses ofthree stories or less(MNECH 1997).Multi-family apartmentbuild<strong>in</strong>gs.The commercial energy efficiency provisions of <strong>the</strong> codeapply primarily to: large residential build<strong>in</strong>gs, officebuild<strong>in</strong>gs, retail build<strong>in</strong>gs, schools and health carebuild<strong>in</strong>gs as well as laboratories and production build<strong>in</strong>gs(BCA 2007).<strong>New</strong> build<strong>in</strong>gs and additions, <strong>in</strong>clud<strong>in</strong>g:1) Build<strong>in</strong>gs more than three stories <strong>in</strong> height,2) Build<strong>in</strong>gs of three stories or less hav<strong>in</strong>g a build<strong>in</strong>garea of more than 600 m 2 , and3) Build<strong>in</strong>gs of three stories or less <strong>in</strong> build<strong>in</strong>g heightthat conta<strong>in</strong> non-residential space (MNECB 1997).Educational, governmental, commercial and <strong>in</strong>dustrialbuild<strong>in</strong>gs.18


INDJAPKORUSAAll new build<strong>in</strong>gs with a connected load of 500 kW or more, or a contract demand of600 kVA or greater, which generally <strong>in</strong>cludes build<strong>in</strong>gs with conditioned floor spaceof 1,000 m 2 or more (ECBC 2008).Residential build<strong>in</strong>gs of Commercial, educational, governmental and <strong>in</strong>dustrialany size.build<strong>in</strong>gs.(1) Apartment build<strong>in</strong>gs with over 50 households, (2) education/research/welfare orbus<strong>in</strong>ess build<strong>in</strong>gs greater than 3,000 m 2 , (3) hotels and hospitals over 2,000 m 2 , (4)department stores with a centralized cool<strong>in</strong>g/heat<strong>in</strong>g system and over 3,000 m 2 , or (5)performance halls, ga<strong>the</strong>r<strong>in</strong>g halls, and stadiums with total floor area over 10,000 m 2(BDCES 2008). Smaller build<strong>in</strong>gs are also covered under South Korea’s Rules forBuild<strong>in</strong>g Facility Criteria & O<strong>the</strong>rwise (RBFCO 2008).Residential build<strong>in</strong>gs <strong>New</strong> build<strong>in</strong>g and <strong>the</strong>ir systems, new portions ofthree stories or less <strong>in</strong> build<strong>in</strong>gs and <strong>the</strong>ir systems, new systems and equipmen<strong>the</strong>ight above grade (IECC <strong>in</strong> exist<strong>in</strong>g build<strong>in</strong>gs, exclud<strong>in</strong>g 1) s<strong>in</strong>gle-family houses,2006) 11 multi-family structures of three stories or less abovegrade, manufactured houses, 2) build<strong>in</strong>gs that do not useei<strong>the</strong>r electricity or fossil fuel, or 3) equipment andportions of build<strong>in</strong>g systems that use energy primarily toprovide for <strong>in</strong>dustrial, manufactur<strong>in</strong>g or commercialprocesses (ASHRAE 90.1-2007).1.7 Construction TrendsStandard construction practices differ significantly <strong>in</strong> APP countries. This is natural asbuild<strong>in</strong>gs must meet <strong>the</strong> climate and cultural needs of <strong>the</strong> people that occupy <strong>the</strong>m.Construction practices can have a major impact on build<strong>in</strong>g energy use. For example, <strong>in</strong>India <strong>the</strong> shift from more traditional architectural with massive walls toward officebuild<strong>in</strong>gs made of glass and steel has led to a dramatic <strong>in</strong>crease <strong>in</strong> <strong>the</strong> demand for aircondition<strong>in</strong>g given <strong>the</strong> hot climate. Average Canadian new detached homes are probablyaround 280 square meters, which is smaller than those <strong>in</strong> <strong>the</strong> U.S., while high riseapartment build<strong>in</strong>gs are likely consistent with those <strong>in</strong> <strong>the</strong> US.While it is beyond <strong>the</strong> scope of this report to provide detailed statistical analysis of <strong>the</strong>differences <strong>in</strong> construction practices <strong>in</strong> different APP countries, it is important tohighlight that <strong>the</strong>se differences can <strong>in</strong>fluence build<strong>in</strong>g energy use. This is important <strong>in</strong><strong>in</strong>terpret<strong>in</strong>g differences <strong>in</strong> <strong>the</strong> build<strong>in</strong>g energy codes of APP countries. The build<strong>in</strong>genergy codes <strong>in</strong> each country may also reflect <strong>the</strong>se differences <strong>in</strong> construction practices.This section briefly touches on a few of <strong>the</strong> more important differences <strong>in</strong> constructiontrends.Heavy versus light construction Residential build<strong>in</strong>gs <strong>in</strong> Asia tend to have heavierconstruction than <strong>the</strong>ir counterparts <strong>in</strong> Australia, Canada and <strong>the</strong> United States. Heavyconstruction tends to have more <strong>the</strong>rmal mass than light construction, which can makeadopt<strong>in</strong>g strict energy requirements easier. Modern-style build<strong>in</strong>gs do not have to rely onlight construction, but <strong>the</strong>y may often rely on significant amounts of glass and steel <strong>in</strong><strong>the</strong>ir construction. Because of its solar heat ga<strong>in</strong> and poor <strong>in</strong>sulat<strong>in</strong>g characteristics, glass11 IECC 2006 has sections for both commercial and residential build<strong>in</strong>gs. This description, based onChapter 4 of IECC 2006, is only for residential build<strong>in</strong>gs.19


can significantly <strong>in</strong>crease energy demand, particularly <strong>in</strong> warm climates. Glass with moreefficient properties is available, but it is rarely as efficient as heavy construction, eventhough glass can also provide day-light<strong>in</strong>g, which can reduce light<strong>in</strong>g demand withappropriate controls.Residential hous<strong>in</strong>g styles S<strong>in</strong>gle-family homes are <strong>the</strong> most common type of residentialbuild<strong>in</strong>gs <strong>in</strong> Australia, Canada, Japan and <strong>the</strong> United States. In contrast, townhouses andapartment build<strong>in</strong>gs are <strong>the</strong> most popular types of hous<strong>in</strong>g <strong>in</strong> South Korea. S<strong>in</strong>ceapartment build<strong>in</strong>gs are dom<strong>in</strong>ant <strong>in</strong> Ch<strong>in</strong>a, Ch<strong>in</strong>a’s residential build<strong>in</strong>g energy codesfocus on apartment build<strong>in</strong>gs.With<strong>in</strong> <strong>the</strong> category of residential houses, <strong>the</strong> western style of houses, such as those <strong>in</strong>Australia, Canada and <strong>the</strong> United States, are strik<strong>in</strong>gly different <strong>in</strong> both appearance and<strong>in</strong>ner construction compared to traditional styles of houses <strong>in</strong> Japan. For example, triplefrontedbrick veneer is a popular hous<strong>in</strong>g style <strong>in</strong> Australia. This type of a house has abrick exterior, and its <strong>in</strong>terior walls are supported by wood frames. 12 In a traditionalhouse <strong>in</strong> Japan, any room <strong>in</strong> <strong>the</strong> ma<strong>in</strong> liv<strong>in</strong>g area could be used as a liv<strong>in</strong>g room, bedroom,d<strong>in</strong><strong>in</strong>g room and study, which can be partitioned with a slid<strong>in</strong>g door made of wood andpaper 13 . Many modern houses <strong>in</strong> Japan are imported from o<strong>the</strong>r countries <strong>in</strong>clud<strong>in</strong>g <strong>the</strong>United States and Canada. As a result, such homes <strong>in</strong> Japan may become more similar tohouses <strong>in</strong> <strong>the</strong> United States and Canada than traditional Japanese homes. In addition,houses <strong>in</strong> Japan usually have a shorter lifespan: 26 years versus 44 years for an averagehouse <strong>in</strong> <strong>the</strong> United States. 14Overhangs and shad<strong>in</strong>g W<strong>in</strong>dow overhangs are popular <strong>in</strong> warm climates. Build<strong>in</strong>genergy codes <strong>in</strong> Australia, Ch<strong>in</strong>a and India have provisions for shad<strong>in</strong>g such as<strong>in</strong>tegrat<strong>in</strong>g shad<strong>in</strong>g <strong>in</strong>to <strong>the</strong> calculation of performance requirements for w<strong>in</strong>dows(Australia, Ch<strong>in</strong>a and India) and requirements for <strong>in</strong>stallation of shad<strong>in</strong>g devices toreduce <strong>in</strong>door energy consumption (Australia and Ch<strong>in</strong>a). The United States also hasprovisions for shad<strong>in</strong>g <strong>in</strong> commercial build<strong>in</strong>gs.Heat<strong>in</strong>g and air condition<strong>in</strong>g In <strong>the</strong> United States, Canada 15 , Australia and South Korea,build<strong>in</strong>gs tend to be sold already equipped with equipment for heat<strong>in</strong>g, ventilation and aircondition<strong>in</strong>g (HVAC) and water heat<strong>in</strong>g. 16 This is not <strong>the</strong> case for residential build<strong>in</strong>gs <strong>in</strong>Ch<strong>in</strong>a, for example. In Ch<strong>in</strong>a, room air conditioners and water heaters are usually<strong>in</strong>stalled by residents before or after <strong>the</strong>y move <strong>in</strong>. As a result, <strong>the</strong>re are no provisionsregard<strong>in</strong>g service water heat<strong>in</strong>g <strong>in</strong> Ch<strong>in</strong>a’s residential build<strong>in</strong>g energy codes.In most parts of Canada, heat<strong>in</strong>g is a necessity but air condition<strong>in</strong>g is not, while aircondition<strong>in</strong>g is a must-have for most build<strong>in</strong>gs <strong>in</strong> <strong>the</strong> United States. The Model National12 For more <strong>in</strong>formation, please see www.homedesigndirectory.com.au/articles/ArchitecturalStyles.shtml.13 For more <strong>in</strong>formation, please see http://en.wikipedia.org/wiki/Hous<strong>in</strong>g_<strong>in</strong>_Japan.14 For more <strong>in</strong>formation, please see www.authorstream.com/Presentation/Reg<strong>in</strong>aldo-39229-sem-japanmarket-Opportunity-ChallengeChang<strong>in</strong>g-Hous<strong>in</strong>g-Outl<strong>in</strong>e-Second-Largest-Situation-marke-Education-pptpowerpo<strong>in</strong>t/.15 There is an ongo<strong>in</strong>g effort <strong>in</strong> Canada to ma<strong>in</strong>ta<strong>in</strong> harmonization with United States’ HVAC, light<strong>in</strong>g andpower standards. While, overall, build<strong>in</strong>g energy code adoption is not consistent across Canada,compliance with product energy efficiency regulation is more or less consistent.16 Korean residential build<strong>in</strong>gs tend to rely on district heat<strong>in</strong>g for heat<strong>in</strong>g. Relatively few residentialbuild<strong>in</strong>gs <strong>in</strong> Korea have air condition<strong>in</strong>g, though luxury high-rises <strong>in</strong>creas<strong>in</strong>gly do have air condition<strong>in</strong>g.20


<strong>Energy</strong> Code of Canada for Build<strong>in</strong>gs (MNECB) and <strong>the</strong> Model National <strong>Energy</strong> Code ofCanada for Houses (MNECH) provide less str<strong>in</strong>gent energy performance requirementswith less comprehensive differentiation <strong>in</strong> types of air condition<strong>in</strong>g equipment comparedto <strong>the</strong> United States standard, ASHRAE 90.1-2007. Air condition<strong>in</strong>g is <strong>in</strong>creas<strong>in</strong>glypopular throughout Asia, but <strong>in</strong> some countries, people are more will<strong>in</strong>g to accept agreater range of <strong>in</strong>door temperatures (hence reduc<strong>in</strong>g <strong>the</strong> energy bill for heat<strong>in</strong>g and aircondition<strong>in</strong>g).Some additional issues Build<strong>in</strong>g orientation is not regulated <strong>in</strong> <strong>the</strong> United States andCanadian build<strong>in</strong>g energy codes, but it is regulated <strong>in</strong> Australia, Ch<strong>in</strong>a, India, Japan andSouth Korea. Ch<strong>in</strong>a, South Korea and Japan recommend that <strong>the</strong> orientation of a hous<strong>in</strong>gunit should face south, for example.Build<strong>in</strong>g energy codes do not conta<strong>in</strong> provisions regard<strong>in</strong>g hous<strong>in</strong>g size, though hous<strong>in</strong>gsize is an important <strong>in</strong>dicator of energy consumption. Average hous<strong>in</strong>g size varies among<strong>the</strong> APP countries.1.8 Climate ZonesSome provisions of build<strong>in</strong>g energy codes, especially <strong>the</strong> <strong>the</strong>rmal characteristics of <strong>the</strong>build<strong>in</strong>g envelope, are grouped by climate zones or geographic locations. For example,a) The Build<strong>in</strong>g Code of Australia (BCA 2007) divides Australia <strong>in</strong>to eight climatezones: 1) high-humidity summer, warm w<strong>in</strong>ter; 2) warm humid summer, mildw<strong>in</strong>ter; 3) hot dry summer, warm w<strong>in</strong>ter; 4) hot dry summer, cool w<strong>in</strong>ter; 5) warmtemperate; 6) mild temperate; 7) cool temperate; and 8) "alp<strong>in</strong>e" area.b) Canada’s MNECB 1997 and MNECH 1997 provide <strong>the</strong>rmal characteristics of <strong>the</strong>build<strong>in</strong>g envelope by its ten prov<strong>in</strong>ces and two territories. 17c) Ch<strong>in</strong>a identifies five climate zones <strong>in</strong> its build<strong>in</strong>g energy codes for commercialbuild<strong>in</strong>gs: 1) severe cold area A, 2) severe cold area B, 3) cold, 4) hot summerand cold w<strong>in</strong>ter (HSCW), and 5) hot summer and warm w<strong>in</strong>ter (HSWW). Ch<strong>in</strong>a’sthree residential build<strong>in</strong>g energy codes focus on three climate zones: 1) heat<strong>in</strong>gzones (a comb<strong>in</strong>ation of severe cold area A and B, and cold); 2) HSCW; and 3)HSWW, respectively.d) The <strong>Energy</strong> Conservation Build<strong>in</strong>g Code (ECBC 2007) divides India <strong>in</strong>to fiveclimate zones: 1) composite, 2) hot and dry, 3) warm and humid, 4) moderate and5) cold.e) In Japan, build<strong>in</strong>g energy codes for commercial build<strong>in</strong>gs are differentiatebetween an ord<strong>in</strong>ary zone (cover<strong>in</strong>g most of Japan), a cold zone (cover<strong>in</strong>g <strong>the</strong> farnorth), and a tropical zone. Build<strong>in</strong>g energy codes for residential build<strong>in</strong>gsprovide requirements for six zones. These zones are based on heat<strong>in</strong>g degree days,so for example zone IV covers areas with an average of 1,500 to 2,500 heat<strong>in</strong>gdegree days per year. This zone covers Tokyo and much of <strong>the</strong> central-sou<strong>the</strong>rnpart of Japan.17 Nei<strong>the</strong>r build<strong>in</strong>g energy code covers Nunavut, a territory that jo<strong>in</strong>ed Canada <strong>in</strong> 1999.21


f) South Korea’s build<strong>in</strong>g energy codes, <strong>the</strong> Build<strong>in</strong>g Design Criteria for <strong>Energy</strong>Sav<strong>in</strong>g (BDCES 2008) and RBFCO 2008, covers three regions: central, south andJeju Island.g) The United States build<strong>in</strong>g energy codes ASHRAE 90.1-2007 and International<strong>Energy</strong> Conservation Code (IECC 2006) cover eight climate zones: 1) very hothumidand dry; 2) hot-humid and dry; 3) warm-humid, dry and mar<strong>in</strong>e; 4) mixedhumid,dry and mar<strong>in</strong>e; 5) cool-humid, dry and mar<strong>in</strong>e; 6) cold-humid and dry; 7)very dry; and 8) subarctic.Generally, build<strong>in</strong>g energy codes <strong>in</strong> APP countries allow variations <strong>in</strong> climate andgeographic conditions and provide relevant <strong>in</strong>formation on <strong>the</strong> def<strong>in</strong>ition andcategorization of <strong>the</strong>ir climate zones and geographic coverage.2 Development HistoryDenmark was among <strong>the</strong> first countries to adopt comprehensive build<strong>in</strong>g energy codes <strong>in</strong>1961, and s<strong>in</strong>ce <strong>the</strong>n it has seen average household energy consumption per unit of spacedrop substantially (Lausten, 2008). Build<strong>in</strong>g energy codes are not new to <strong>the</strong> APP region.The United States was <strong>the</strong> first APP country to adopt a comprehensive build<strong>in</strong>g energycode, followed shortly <strong>the</strong>reafter by Japan and South Korea. As <strong>in</strong>dicated by <strong>the</strong> timel<strong>in</strong>eshown <strong>in</strong> Table 6, <strong>in</strong> <strong>the</strong> past 10-15 years, all APP countries have worked to streng<strong>the</strong>n<strong>the</strong>ir build<strong>in</strong>g energy codes and enforcement systems. As a result, many APP countrieshave seen impressive improvements <strong>in</strong> <strong>the</strong> energy efficiency of new build<strong>in</strong>gs. Currently,several APP countries are consider<strong>in</strong>g even more radical improvements to <strong>the</strong>ir build<strong>in</strong>genergy codes. For example, <strong>the</strong> United States is consider<strong>in</strong>g a 30% improvement <strong>in</strong> <strong>the</strong>requirements for both commercial and residential build<strong>in</strong>gs by 2010 and 2012,respectively. Climate change, energy security and consumer cost reduction are all driversbeh<strong>in</strong>d this trend.The rema<strong>in</strong>der of this section summarizes <strong>the</strong> development of build<strong>in</strong>g energy policy andcodes <strong>in</strong> each APP country.22


Table 6 Timel<strong>in</strong>e for Build<strong>in</strong>g <strong>Energy</strong> Codes Development <strong>in</strong> APP Countries, 1975-2007 1875 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 00 01 02 03 04 05 06 07 08AUSCommercialResidentialCANCommercialResidentialCHNCommercialResidentialINDCommercialJAPCommercialResidentialKORCommercial/ResidentialUSAMECCommercialASHRAEMECResidentialASHRAE18 MEC is short for Model <strong>Energy</strong> Code. The 1977 MEC listed for <strong>the</strong> United States was known as <strong>the</strong> Model Code for <strong>Energy</strong> Conservation.23


2.1 AustraliaIn <strong>the</strong> past, Australia’s energy policy focused primarily on <strong>the</strong> supply side (IEA, 2005).However, <strong>the</strong> government has aggressively pursued energy efficiency <strong>in</strong> recent years. In2004, <strong>the</strong> government published a widely quoted white paper entitled “Secur<strong>in</strong>gAustralia’s <strong>Energy</strong> Future,” which <strong>in</strong>cluded an exam<strong>in</strong>ation of <strong>the</strong> potential of energyefficiency <strong>in</strong> reduc<strong>in</strong>g energy <strong>in</strong>tensity and carbon emissions. The white paper announcedseveral <strong>in</strong>itiatives <strong>in</strong>clud<strong>in</strong>g <strong>the</strong> expansion of <strong>the</strong> M<strong>in</strong>imum <strong>Energy</strong> PerformanceStandards to cover build<strong>in</strong>gs and more appliances (Australian Government, 2009; IEA,2005).With participation from all levels of <strong>the</strong> Australian government and from representativesof <strong>the</strong> build<strong>in</strong>g <strong>in</strong>dustry, <strong>the</strong> Australian Build<strong>in</strong>g Codes Board was officially founded by<strong>the</strong> Australian Commonwealth, state and territory governments <strong>in</strong> 1994 and reaffirmed <strong>in</strong>2006. Key objectives of Australian Build<strong>in</strong>g Codes Board <strong>in</strong>clude: 1) ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g andupdat<strong>in</strong>g <strong>the</strong> BCA, 2) provid<strong>in</strong>g regulations to “aid <strong>the</strong> design, construction and use ofbuild<strong>in</strong>gs throughout Australia,” and 3) support<strong>in</strong>g <strong>the</strong> governmental agenda on suchissues as relat<strong>in</strong>g to climate change (ABCB, 2008).The BCA offers technical provisions <strong>in</strong> one cod<strong>in</strong>g manual for <strong>the</strong> design andconstruction of build<strong>in</strong>gs and o<strong>the</strong>r structures throughout Australia and allows forvariations by climate zone. It covers structure, fire resistance, services, equipment, energyefficiency and certa<strong>in</strong> aspects of health and amenities. <strong>Energy</strong> efficiency measures were<strong>in</strong>troduced <strong>in</strong>to <strong>the</strong> BCA <strong>in</strong> January 2003. On energy efficiency, <strong>the</strong> code allows forei<strong>the</strong>r a performance-based approach to compliance (compared to a reference build<strong>in</strong>g),or a prescriptive approach based on requirements for specific build<strong>in</strong>g components.S<strong>in</strong>ce 2003, <strong>the</strong> BCA has been updated annually. This report was written based on BCA2007; <strong>the</strong> most recent version is BCA 2009.2.2 CanadaNatural Resources Canada is <strong>the</strong> ma<strong>in</strong> department of <strong>the</strong> Canadian governmentresponsible for natural resources and energy. It has promoted energy efficiency and <strong>the</strong>use of alternative energy s<strong>in</strong>ce <strong>the</strong> late 1970s. Natural Resources Canada’s policy<strong>in</strong>struments <strong>in</strong>clude: regulation, f<strong>in</strong>ancial <strong>in</strong>centives, leadership, <strong>in</strong>formation, voluntary<strong>in</strong>itiatives, research and development fund<strong>in</strong>g, and technology demonstrations (OEE,2006, 2009) The Office of <strong>Energy</strong> <strong>Efficiency</strong> of Natural Resources Canada, established <strong>in</strong>1998, undertakes market transformation <strong>in</strong>itiatives to improve energy efficiency. TheOffice of <strong>Energy</strong> <strong>Efficiency</strong> has <strong>in</strong>itiated many <strong>in</strong>fluential projects and policies topromote build<strong>in</strong>g energy efficiency.Canada approved its first comprehensive law on energy efficiency, <strong>the</strong> <strong>Energy</strong> <strong>Efficiency</strong>Act, <strong>in</strong> 1992. 19 This act gives <strong>the</strong> Government of Canada <strong>the</strong> authority to make andenforce regulations related to performance and label<strong>in</strong>g requirements for energy-19 A document entitled “Measures for <strong>Energy</strong> Conservation <strong>in</strong> Build<strong>in</strong>gs” was published <strong>in</strong> 1978 and usedas a guidel<strong>in</strong>e for federal and o<strong>the</strong>r government build<strong>in</strong>gs, but <strong>the</strong> document was not written or published <strong>in</strong>code language.24


consum<strong>in</strong>g products (as well as doors and w<strong>in</strong>dows). The act only applies to products thatare imported or shipped between prov<strong>in</strong>ces. The act also authorizes <strong>the</strong> Government ofCanada to collect statistics on energy use and alternative energy (OEE, 2006, 2009).Currently, Canada has seven national build<strong>in</strong>g codes 20 , two of which, MNECB andMNECH, relate to build<strong>in</strong>g energy efficiency. The Canadian Commission on Build<strong>in</strong>gand Fire Codes, funded by code sales and <strong>the</strong> National Research Council, is responsiblefor develop<strong>in</strong>g and updat<strong>in</strong>g six of <strong>the</strong> model national codes.The Canadian Commission on Build<strong>in</strong>g and Fire Codes prepared both MNECB andMNECH, and National Research Council first published <strong>the</strong>m <strong>in</strong> 1997. National ResearchCouncil, Natural Resources Canada, <strong>the</strong> Canadian Electricity Association, and <strong>the</strong>prov<strong>in</strong>cial and territorial m<strong>in</strong>istries of energy funded <strong>the</strong> research to develop <strong>the</strong> modelcode and <strong>the</strong> support<strong>in</strong>g software. MNECB and MNECH were heavily <strong>in</strong>fluenced byASHRAE 90.1-1989.In April 2008, National Research Council and Natural Resources Canada announced that<strong>the</strong>y were jo<strong>in</strong><strong>in</strong>g forces to update MNECB. Natural Resources Canada is provid<strong>in</strong>gtechnical expertise and up to $5 million to support this <strong>in</strong>itiative. National ResearchCouncil will publish <strong>the</strong> new energy code <strong>in</strong> 2011. The new code will complement <strong>the</strong>next version of <strong>the</strong> model national construction codes, which are scheduled forpublication <strong>in</strong> 2010 (NRC, 2008).2.3 Ch<strong>in</strong>aBuild<strong>in</strong>g energy efficiency issues <strong>in</strong> Ch<strong>in</strong>a have drawn <strong>in</strong>creas<strong>in</strong>g attention from <strong>the</strong>government s<strong>in</strong>ce <strong>the</strong> mid-1980s, when Ch<strong>in</strong>a began its large-scale construction <strong>in</strong> urbanareas (Huang, 2008). Ch<strong>in</strong>a’s first <strong>Energy</strong> Conservation Law (released <strong>in</strong> 1997)addressed <strong>the</strong> importance of build<strong>in</strong>g energy codes <strong>in</strong> one of its 50 Articles. The revised<strong>Energy</strong> Conservation Law, released <strong>in</strong> 2007, has a separate Section 21 on Construction<strong>Energy</strong> Conservation, which <strong>in</strong>cludes seven articles directly or <strong>in</strong>directly related to buildenergy codes.The National Development and Reform Commission, <strong>the</strong> powerful adm<strong>in</strong>istrative entity<strong>in</strong> charge of Ch<strong>in</strong>a’s macroeconomic policies and development, issued <strong>the</strong> Ch<strong>in</strong>a Mediumand Long-Term <strong>Energy</strong> Conservation Plan <strong>in</strong> 2004. The Plan revealed ambitious energyconservation targets for build<strong>in</strong>gs <strong>in</strong> Ch<strong>in</strong>a: “Dur<strong>in</strong>g <strong>the</strong> Eleventh Five-year Plan period,new build<strong>in</strong>gs should be strictly subject to <strong>the</strong> design standard of 50% energyconservation. Several major cities such as Beij<strong>in</strong>g and Tianj<strong>in</strong> shall take a lead <strong>in</strong>implement<strong>in</strong>g <strong>the</strong> 65% energy-sav<strong>in</strong>g standard. Reform of heat supply system shall becarried out <strong>in</strong> a full scale. In Ch<strong>in</strong>a’s large and medium cities, a charge system based on<strong>the</strong>rmal meter will be widely spread <strong>in</strong> district heat<strong>in</strong>g of residential and public build<strong>in</strong>gs;20 The o<strong>the</strong>r build<strong>in</strong>g codes are <strong>the</strong> 1) National Build<strong>in</strong>g Code of Canada, 2) National Fire Code of Canada,3) National Plumb<strong>in</strong>g Code of Canada, 4) National Farm Build<strong>in</strong>g Code, and 5) National Hous<strong>in</strong>g Codeand Illustrated Guide.21 The sections under Chapter III Rational Use of <strong>Energy</strong> Conservation <strong>in</strong>clude: Section 1 GeneralProvisions, Section 2 Industrial <strong>Energy</strong> Conservation, Section 3 Construction <strong>Energy</strong> Conservation, Section4 Transport <strong>Energy</strong> Conservation, Section 5 <strong>Energy</strong> Conservation by Public Institutions and Section 6<strong>Energy</strong> Conservation by Key <strong>Energy</strong> Consum<strong>in</strong>g Entities.25


small cities will be pilot of such practice. <strong>Energy</strong> sav<strong>in</strong>g retrofits for exist<strong>in</strong>g residentialand public build<strong>in</strong>gs shall be conducted <strong>in</strong> comb<strong>in</strong>ation with urban reconstruction. Largecities are expected to improve 25% of build<strong>in</strong>g areas, medium cities 15% and small cities10%.”In 2005, <strong>the</strong> Ch<strong>in</strong>ese government called for build<strong>in</strong>g a resource conserv<strong>in</strong>g andenvironmentally friendly society <strong>in</strong> its Eleventh Five-Year Plan. This plan is widelyregarded as <strong>the</strong> roadmap for Ch<strong>in</strong>a’s social and economic development for 2006 to 2010.In this newest national plan, ten priority programs related to energy conservation havebeen identified for meet<strong>in</strong>g <strong>the</strong> goals of reduc<strong>in</strong>g energy <strong>in</strong>tensity and mitigat<strong>in</strong>g primarypollutants by 20% and 10%, respectively, by <strong>the</strong> year 2010 compared to 2005 levels. Sixof <strong>the</strong> ten priority programs are related to build<strong>in</strong>g energy efficiency: 1) energyconservation <strong>in</strong> build<strong>in</strong>gs, 2) energy-efficient light<strong>in</strong>g, 3) energy conservation <strong>in</strong>governmental build<strong>in</strong>gs and vehicles, 4) district heat<strong>in</strong>g and power generation, 5)recovery of residual heat and pressure, and 6) build<strong>in</strong>g <strong>the</strong> energy conservationmonitor<strong>in</strong>g and technological support system.Ch<strong>in</strong>a has issued a series of national and <strong>in</strong>dustrial codes to promote build<strong>in</strong>g energyefficiency, <strong>in</strong>clud<strong>in</strong>g three design standards for residential build<strong>in</strong>gs <strong>in</strong> different parts ofCh<strong>in</strong>a (published <strong>in</strong> 1995, 2001 and 2003, respectively) and one design standard forpublic build<strong>in</strong>gs (2005). In addition, Ch<strong>in</strong>a has developed standards for light<strong>in</strong>g design <strong>in</strong>build<strong>in</strong>gs (2004). <strong>Energy</strong> standards cover<strong>in</strong>g o<strong>the</strong>r build<strong>in</strong>g-related issues <strong>in</strong>clude: <strong>the</strong>technical specifications for <strong>the</strong> energy-efficient renovation of exist<strong>in</strong>g residentialbuild<strong>in</strong>gs <strong>in</strong> <strong>the</strong> heat<strong>in</strong>g zones (2001), <strong>the</strong> technical code for ground source heat pumpsystems (2005), <strong>the</strong> technical code for solar water heat<strong>in</strong>g systems <strong>in</strong> civil build<strong>in</strong>gs 22(2006), <strong>the</strong> standard for energy consumption surveys <strong>in</strong> civil build<strong>in</strong>gs (2007) and <strong>the</strong>standard for energy-efficiency <strong>in</strong>spections of build<strong>in</strong>gs (2007). In this report, build<strong>in</strong>genergy codes refer to design standards for public and residential build<strong>in</strong>gs as well as <strong>the</strong>standards for light<strong>in</strong>g design.The M<strong>in</strong>istry of Hous<strong>in</strong>g and Urban-Rural Development (<strong>the</strong> former M<strong>in</strong>istry ofConstruction) coord<strong>in</strong>ates and develops Ch<strong>in</strong>a’s national build<strong>in</strong>g energy codes. TheCh<strong>in</strong>a Academy of Build<strong>in</strong>g Research is <strong>the</strong> chief developer of nearly all of Ch<strong>in</strong>a’snational build<strong>in</strong>g energy codes. On behalf of <strong>the</strong> M<strong>in</strong>istry of Hous<strong>in</strong>g and Urban-RuralDevelopment, <strong>the</strong> Academy is responsible for expla<strong>in</strong><strong>in</strong>g and ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g Ch<strong>in</strong>a’sbuild<strong>in</strong>g energy codes.2.4 IndiaRecogniz<strong>in</strong>g that energy use and air pollution are important issues <strong>in</strong> India’s build<strong>in</strong>gs,India issued <strong>the</strong> National Hous<strong>in</strong>g and Habitat Policy <strong>in</strong> 1998. The Policy acknowledged<strong>the</strong> importance of construction techniques and materials <strong>in</strong> energy conservation. It alsoemphasized that <strong>the</strong> government should specify energy efficiency levels for differentcategories of build<strong>in</strong>gs (IEA, 2008b).In 2001, <strong>the</strong> Indian government enacted <strong>the</strong> <strong>Energy</strong> Conservation Act, which promotesenergy efficiency and conservation domestically. The <strong>Energy</strong> Conservation Act mandated22 Civil build<strong>in</strong>gs refer to both residential and public build<strong>in</strong>gs.26


<strong>the</strong> creation of <strong>the</strong> Bureau of <strong>Energy</strong> <strong>Efficiency</strong>, which was established under <strong>the</strong>M<strong>in</strong>istry of Power <strong>in</strong> 2002. The <strong>Energy</strong> Conservation Act also authorized Bureau of<strong>Energy</strong> <strong>Efficiency</strong> to establish <strong>the</strong> ECBC.The Bureau of Indian Standards issued National Build<strong>in</strong>g Code of India <strong>in</strong> 2005, whichcovered a range of structural, safety, and o<strong>the</strong>r design issues. <strong>Energy</strong> efficiency wasmarg<strong>in</strong>ally addressed (IEA, 2008b).Under <strong>the</strong> direction of <strong>the</strong> Prime M<strong>in</strong>ister, <strong>the</strong> government’s Plann<strong>in</strong>g Commission issued<strong>the</strong> Integrated <strong>Energy</strong> Policy <strong>in</strong> 2006. This document identifies major areas with largepotential for energy sav<strong>in</strong>gs. Five of <strong>the</strong> 13 areas are related to <strong>the</strong> build<strong>in</strong>gs sector<strong>in</strong>clud<strong>in</strong>g build<strong>in</strong>g design, construction, HVAC, light<strong>in</strong>g and household appliances.In 2007, <strong>the</strong> M<strong>in</strong>istry of Power and Bureau of <strong>Energy</strong> <strong>Efficiency</strong> issued <strong>the</strong> ECBC —<strong>the</strong>first stand-alone national build<strong>in</strong>g energy code <strong>in</strong> India. While it is currently voluntary,ECBC establishes m<strong>in</strong>imum energy efficiency requirements for <strong>the</strong> build<strong>in</strong>g envelope,light<strong>in</strong>g, HVAC, electrical system, water heat<strong>in</strong>g, and pump<strong>in</strong>g systems.2.5 JapanJapan was hit hard by <strong>the</strong> 1973 oil crisis because its oil consumption contributed to 80%of its total primary energy demand at that time. S<strong>in</strong>ce <strong>the</strong>n, <strong>the</strong> Japanese government hasbeen committed to mak<strong>in</strong>g energy efficiency one of its priorities <strong>in</strong> national development.Today, Japan has one of <strong>the</strong> most efficient economies <strong>in</strong> <strong>the</strong> world as measured by energy<strong>in</strong>tensity.Japan’s Rational Use of <strong>Energy</strong>, or <strong>Energy</strong> Conservation Law, was first issued <strong>in</strong> 1979.Initially, it was primarily focused on promot<strong>in</strong>g energy efficiency <strong>in</strong> <strong>the</strong> <strong>in</strong>dustrial sector.The law served as <strong>the</strong> foundation of Japan’s energy efficiency policies and was updatednumerous times <strong>in</strong>clud<strong>in</strong>g <strong>in</strong> 1983, 1993, 1998, 2002, 2005 and 2008 23 . The 2002revision required owners of new commercial build<strong>in</strong>gs larger than 2,000 square meters tosubmit energy sav<strong>in</strong>g plans to <strong>the</strong> government. The 2005 revision, which took effect <strong>in</strong>2006, streng<strong>the</strong>ned energy-efficiency measures for residential build<strong>in</strong>gs and <strong>the</strong>construction sector. Owners of build<strong>in</strong>gs with over 2,000 square meters must submitenergy sav<strong>in</strong>g plans for renovation permits (IEA, 2008c, d, e and f). Recent revisions to<strong>the</strong> <strong>Energy</strong> Conservation Law expand <strong>the</strong> number of build<strong>in</strong>gs for which energy sav<strong>in</strong>gplans are required; <strong>the</strong> revisions go <strong>in</strong>to effect <strong>in</strong> 2009. The revisions require owners ofsmall and medium-sized build<strong>in</strong>gs (from 300 to 2,000 square meters) to submit energysav<strong>in</strong>g plans before construction or renovations beg<strong>in</strong>. Also, construction companiesbuild<strong>in</strong>g more than 150 houses per year need to improve <strong>the</strong> energy performance of <strong>the</strong>houses <strong>the</strong>y build.Under <strong>the</strong> <strong>Energy</strong> Conservation Law, Japan has issued a set of build<strong>in</strong>g energy standardsfor commercial and residential build<strong>in</strong>gs. The Criteria for Clients on <strong>the</strong> Rationalizationof <strong>Energy</strong> Use for Build<strong>in</strong>gs (CCREUB) was first issued <strong>in</strong> 1979, and <strong>the</strong> newest versionwas released <strong>in</strong> 1999 by <strong>the</strong> M<strong>in</strong>istry of International Trade and Industry and <strong>the</strong> M<strong>in</strong>istryof Construction. Two build<strong>in</strong>g energy standards relate to residential build<strong>in</strong>gs: 1) Designand Construction Guidel<strong>in</strong>es on <strong>the</strong> Rationalization of <strong>Energy</strong> Use for Houses23 Part of <strong>the</strong> 2008 version of <strong>the</strong> law will enter <strong>in</strong>to force <strong>in</strong> April 2009 and <strong>the</strong> rema<strong>in</strong>der <strong>in</strong> April 2010.27


(DCGREUH) issued by <strong>the</strong> M<strong>in</strong>istry of Construction <strong>in</strong> 1980 and later revised <strong>in</strong> 1992,1999, 2003, 2006 and 2008; and 2) Criteria for Clients on <strong>the</strong> Rationalization of <strong>Energy</strong>Use for Houses (CCREUH) issued by <strong>the</strong> M<strong>in</strong>istry of International Trade and Industryand <strong>the</strong> M<strong>in</strong>istry of Construction <strong>in</strong> 1980 and later revised several times between 1992and 2008.2.6 South KoreaIn <strong>the</strong> wake of <strong>the</strong> oil crisis <strong>in</strong> <strong>the</strong> 1970s, South Korea established <strong>the</strong> M<strong>in</strong>istry of Powerand Resources. The government <strong>the</strong>n issued <strong>the</strong> Rational <strong>Energy</strong> Utilization Act <strong>in</strong> 1979as a national law for energy efficiency and conservation. It also established <strong>the</strong> Korean<strong>Energy</strong> Management Corporation <strong>in</strong> 1980 to manage national energy efficiency programsand policies issued by Rational <strong>Energy</strong> Utilization Act (Ahn, 1998).Recogniz<strong>in</strong>g that its economy is largely fueled by imported fossil fuels, South Korea hasset <strong>the</strong> three E’s (energy security of supply, economic efficiency and environmentalprotection) as its national goals for achiev<strong>in</strong>g susta<strong>in</strong>able economic development. TheM<strong>in</strong>istry of Knowledge Economy (formerly <strong>the</strong> M<strong>in</strong>istry of Commerce, Industry and<strong>Energy</strong> 24 ) is <strong>in</strong> charge of national energy policy.From <strong>the</strong> mid-1970s to <strong>the</strong> mid-1990s, South Korea focused on improv<strong>in</strong>g energyefficiency <strong>in</strong> <strong>the</strong> <strong>in</strong>dustrial sector. S<strong>in</strong>ce <strong>the</strong> late 1990s, <strong>the</strong> government has promotedenergy efficiency <strong>in</strong> <strong>the</strong> build<strong>in</strong>gs and transportation sectors (Hong et al. 2007). Forexample, <strong>the</strong> government is prepar<strong>in</strong>g new, long-term energy conservation goals for <strong>the</strong>build<strong>in</strong>gs sector. These goals are currently anticipated to reduce emissions by 30% <strong>in</strong> thissector by 2030, as compared with bus<strong>in</strong>ess-as-usual emissions.South Korea issued its first mandatory build<strong>in</strong>g standard on <strong>in</strong>sulation thickness <strong>in</strong> 1977,followed by build<strong>in</strong>g energy standards for several types of build<strong>in</strong>gs <strong>in</strong> <strong>the</strong> next twodecades. These standards covered offices, hotels, hospitals and residential build<strong>in</strong>gs.These <strong>in</strong>dividual standards were <strong>in</strong>tegrated <strong>in</strong>to <strong>the</strong> BDCES <strong>in</strong> 2001, which is mandatoryfor all types of residential and commercial build<strong>in</strong>gs where high energy consumption isexpected. Major revisions to BDCES were issued <strong>in</strong> 2003 (<strong>in</strong>corporated diverse highefficiencyappliances), 2004 (<strong>in</strong>corporated new technologies) and 2008 (<strong>in</strong>corporatedrenewable technologies and revised <strong>in</strong>centive structure for voluntary standards).The BDCES was a product of <strong>in</strong>tensive revision of exist<strong>in</strong>g standards and review ofbuild<strong>in</strong>g energy codes of several countries <strong>in</strong>clud<strong>in</strong>g <strong>the</strong> United States, <strong>the</strong> UnitedK<strong>in</strong>gdom, Germany, Japan and Canada. The South Korean government felt that complexcodes like those <strong>in</strong> <strong>the</strong> United States may provide detailed rules but it preferred a simpleapproach to ease implementation <strong>in</strong> South Korea (Lee 2006). The BDCES underwentseveral revisions after 2001; <strong>the</strong> latest occurred <strong>in</strong> November 2008. This report reflects<strong>the</strong> November 2008 version of <strong>the</strong> standard.The BDCES and <strong>the</strong> RBFCO represent different types of sub-regulations under <strong>the</strong>framework of <strong>the</strong> Build<strong>in</strong>g Act. The RBFCO, first implemented <strong>in</strong> 1992, conta<strong>in</strong>sprescriptive requirements for <strong>in</strong>sulation, but also for construction more broadly, <strong>in</strong>clud<strong>in</strong>g24 The M<strong>in</strong>istry of <strong>Energy</strong> and Resources was established <strong>in</strong> 1978 after <strong>the</strong> oil crisis and later <strong>in</strong>tegrated <strong>in</strong>to<strong>the</strong> M<strong>in</strong>istry of Commerce, Industry and <strong>Energy</strong>.28


safety. 25 By contrast, <strong>the</strong> BDCES specifically covers energy. For this reason, this reportfocuses primarily on <strong>the</strong> BDCES. Any references to <strong>the</strong> RBFCO <strong>in</strong> this report reflect <strong>the</strong>2008 version of <strong>the</strong> standard.2.7 The United StatesIn response to <strong>the</strong> 1973 energy crisis, <strong>the</strong> United States began develop<strong>in</strong>g energy codesand standards for build<strong>in</strong>gs. The first standard developed was <strong>the</strong> ASHRAE Standard 90 -75 <strong>Energy</strong> Conservation <strong>in</strong> <strong>New</strong> Build<strong>in</strong>g Design, published <strong>in</strong> 1975. That same year, <strong>the</strong>United States Congress passed <strong>the</strong> <strong>Energy</strong> Policy and Conservation Act. ASHRAE/IESStandard 90.1 was first mentioned <strong>in</strong> <strong>the</strong> national energy policy act, and it was suggestedthat it be established as an amended uniform national standard (Congress, 1975).The <strong>Energy</strong> Policy Act of 1992 had significant impacts on <strong>the</strong> development of build<strong>in</strong>genergy codes. This law required <strong>the</strong> U.S. Department of <strong>Energy</strong> (DOE) to be actively<strong>in</strong>volved <strong>in</strong> <strong>the</strong> development and deployment of build<strong>in</strong>g energy codes and to collaborateclosely with states, local governments, and build<strong>in</strong>g code communities. DOE is alsoresponsible for determ<strong>in</strong><strong>in</strong>g if new versions of model energy codes save energy.ASHRAE Standard 90.1 serves as <strong>the</strong> basis for DOE’s formal determ<strong>in</strong>ations of energysav<strong>in</strong>gs for commercial build<strong>in</strong>gs and high-rise multi-family residential build<strong>in</strong>gs asmandated by <strong>the</strong> <strong>Energy</strong> Policy Act of 1992. The <strong>Energy</strong> Policy Act of 1992 also listed<strong>the</strong> Council of America Build<strong>in</strong>g Officials’ Model <strong>Energy</strong> Code of 1992 as <strong>the</strong> basis for<strong>the</strong> DOE’s formal determ<strong>in</strong>ations of energy sav<strong>in</strong>gs for low-rise residential build<strong>in</strong>gs.S<strong>in</strong>ce <strong>the</strong>n, build<strong>in</strong>g energy codes have attracted more coverage <strong>in</strong> national energylegislation. The <strong>Energy</strong> Policy Act of 2005 covered build<strong>in</strong>g energy codes <strong>in</strong> <strong>the</strong>subsections of “Federal build<strong>in</strong>g performance standards” and “<strong>Energy</strong>-efficient publicbuild<strong>in</strong>gs.” 26 The <strong>Energy</strong> Independence and Security Act of 2007, <strong>the</strong> most recent UnitedStates energy legislation, underscores <strong>the</strong> important role of build<strong>in</strong>g energy codes <strong>in</strong>build<strong>in</strong>g energy efficiency <strong>in</strong> subtitles of “Residential Build<strong>in</strong>g <strong>Efficiency</strong>,” “High-Performance Commercial Build<strong>in</strong>gs,” “High-Performance Federal Build<strong>in</strong>gs,” and“Healthy High-Performance Schools.”In <strong>the</strong> United States, ASHRAE/IES Standard 90.1 is a model energy standard for <strong>the</strong>commercial design community. IECC developed by <strong>the</strong> International Code Council (<strong>the</strong>successor to <strong>the</strong> Council of America Build<strong>in</strong>g Officials’ Model <strong>Energy</strong> Code), is a modelcode for <strong>the</strong> code enforcement community for both residential and commercial build<strong>in</strong>gs.S<strong>in</strong>ce 1975, <strong>the</strong> ASHRAE Standard 90 has been issued (under <strong>the</strong> names 90A and 90.1)<strong>in</strong> 1980, 1989, 1999, 2001, 2004 and most recently <strong>in</strong> 2007. Model energy codes wereissued <strong>in</strong> 1977, 1983, 1986, 1989, 1992, 1993 and 1995 by <strong>the</strong> Council of AmericaBuild<strong>in</strong>g Officials and <strong>in</strong> 1998, 2000, 2003, 2006 and <strong>the</strong> forthcom<strong>in</strong>g 2009 by <strong>the</strong> ICC.DOE is currently work<strong>in</strong>g with both IECC and ASHRAE to improve <strong>the</strong> residential andcommercial energy codes by 30%. DOE’s goal under this <strong>in</strong>itiative is that by 2012 and2010 (respectively) new build<strong>in</strong>gs would be 30% more efficient than build<strong>in</strong>gs built25 Articles 21 and 22 of <strong>the</strong> RBFCO refer to <strong>the</strong> BDCES.26 The structure of <strong>the</strong> <strong>Energy</strong> Policy Act consists of a number of titles, which <strong>in</strong>clude a number of subtitles.A subtitle <strong>in</strong>cludes a number of subsections labeled as “Sec.”29


accord<strong>in</strong>g to <strong>the</strong> current codes. This <strong>in</strong>itiative also <strong>in</strong>cludes a goal to monitor and <strong>in</strong>crease<strong>the</strong> compliance level at <strong>the</strong> state level to 90%.2.8 SummarySome of <strong>the</strong> important highlights <strong>in</strong> <strong>the</strong> development of build<strong>in</strong>g energy codes <strong>in</strong> APPcountries <strong>in</strong>clude <strong>the</strong> follow<strong>in</strong>g:a) Australia has updated its build<strong>in</strong>g energy codes annually s<strong>in</strong>ce 2003.b) Build<strong>in</strong>g energy codes <strong>in</strong> Canada and India were highly <strong>in</strong>fluenced by <strong>the</strong>structure and development process of <strong>the</strong> United States ASHRAE 90.1 standard.c) Australia, Canada, Ch<strong>in</strong>a, Japan and <strong>the</strong> United States have both commercial andresidential build<strong>in</strong>g energy codes, while India has a build<strong>in</strong>g energy code for largebuild<strong>in</strong>gs. Ch<strong>in</strong>a’s residential and commercial codes also cover only largebuild<strong>in</strong>gs. South Korea’s build<strong>in</strong>g codes cover both commercial and residentialbuild<strong>in</strong>gs <strong>in</strong> <strong>the</strong> same document. 27d) The United States was <strong>the</strong> first APP country to develop both residential andcommercial build<strong>in</strong>g codes <strong>in</strong> 1975.3 Comparison of <strong>the</strong> Structure and Requirements ofBuild<strong>in</strong>g <strong>Energy</strong> Codes3.1 Structural ComparisonThe topics that codes cover vary across countries. With<strong>in</strong> <strong>the</strong> APP region, <strong>the</strong> Englishspeak<strong>in</strong>gcountries have codes that cover fairly similar issues, while <strong>the</strong> East Asiancountries each have unique codes cover<strong>in</strong>g different sets of issues. The United States,Canada and India all have build<strong>in</strong>g energy codes developed from or based on ASHRAEstandards. The Australian build<strong>in</strong>g energy code, while not directly patterned afterASHRAE, does approach build<strong>in</strong>g energy requirements <strong>in</strong> a fairly similar manner. Thebuild<strong>in</strong>g energy codes <strong>in</strong> Australia, Canada, India and <strong>the</strong> United States all address suchbuild<strong>in</strong>g components as build<strong>in</strong>g envelope, HVAC, light<strong>in</strong>g, service hot water, electricalpower and <strong>the</strong> build<strong>in</strong>g performance approach. Commercial build<strong>in</strong>g energy codes oftenprovide more detailed and str<strong>in</strong>gent provisions than residential build<strong>in</strong>g energy codes thattarget s<strong>in</strong>gle-family homes (except for India, which has only one code for large build<strong>in</strong>gs).The codes <strong>in</strong> East Asia are less homogenous compared to those described above. Ch<strong>in</strong>a’sbuild<strong>in</strong>g energy codes are focused on <strong>the</strong> build<strong>in</strong>g envelope and HVAC; light<strong>in</strong>g iscovered <strong>in</strong> a separate document. In Japan, <strong>the</strong> residential and commercial energy codeshave very different structures and compliance paths. Both Ch<strong>in</strong>a and Japan have detailedresidential build<strong>in</strong>g energy codes but <strong>in</strong> Ch<strong>in</strong>a <strong>the</strong> code covers only large residential27 BDCES focuses on large-scale build<strong>in</strong>gs, but South Korea’s RBFCO applies to all build<strong>in</strong>gs regardlessof <strong>the</strong>ir size. It is mandatory and provides requirements for m<strong>in</strong>imum U-values, air tightness of build<strong>in</strong>gand o<strong>the</strong>r issues for all commercial and residential build<strong>in</strong>gs.30


uild<strong>in</strong>gs, while <strong>in</strong> Japan, all residential build<strong>in</strong>gs are covered. South Korea’s build<strong>in</strong>genergy code focuses on build<strong>in</strong>gs with high energy use and categorizes provisions <strong>in</strong>tosections such as construction design, electrical design, mechanical design, and renewableenergy facility design. The BDCES of South Korea and <strong>the</strong> Japanese commercial codeboth <strong>in</strong>clude a po<strong>in</strong>t scor<strong>in</strong>g system, which makes it easier to <strong>in</strong>clude topics like build<strong>in</strong>gshape and orientation, renewable energy, and natural ventilation. (Prescriptive-basedcodes make it harder to <strong>in</strong>clude such a broad range of issues because all build<strong>in</strong>gs mustbe able to comply, while po<strong>in</strong>t systems can encourage non-obligatory measures as well).Table 7 compares <strong>the</strong> structure of build<strong>in</strong>g energy codes <strong>in</strong> <strong>the</strong> APP countries. It showsthat codes <strong>in</strong> all countries cover build<strong>in</strong>g envelope and HVAC. The third and fourth mostcovered are service water heat<strong>in</strong>g and light<strong>in</strong>g, respectively. Build<strong>in</strong>g energy codes <strong>in</strong>most countries <strong>in</strong>clude build<strong>in</strong>g performance-based alternative solutions.In addition, build<strong>in</strong>g energy codes <strong>in</strong> some countries address different issues that are notcommonly discussed <strong>in</strong> o<strong>the</strong>r countries. Examples <strong>in</strong>clude <strong>in</strong>dividual sections on “Accessfor Ma<strong>in</strong>tenance” and “<strong>Energy</strong> <strong>Efficiency</strong> Installation” for commercial build<strong>in</strong>gs <strong>in</strong>Australia (BCA 2007), “Manufactured Hous<strong>in</strong>g” for residential houses <strong>in</strong> Canada(MNECH 1997), provisions on operation and ma<strong>in</strong>tenance <strong>in</strong> “How to Live” for houses<strong>in</strong> Japan (DCGREUH 1999), and provisions for relaxed zon<strong>in</strong>g restrictions on build<strong>in</strong>gsize and a section on “Renewable <strong>Energy</strong> Facility Design Criteria” <strong>in</strong> South Korea’sbuild<strong>in</strong>g energy codes (BDCES 2008).31


Table 7 Structural Comparison of Build<strong>in</strong>g <strong>Energy</strong> Codes <strong>in</strong> APP CountriesItemsAUS CAN CHN IND JAP KOR USABCA 2007MNECB1997MNECH1997CommercialBuild<strong>in</strong>gs2005Heat<strong>in</strong>gZone1995,2008HSCW2001,2008HSWW2003ECBC2007CCREUB1999ResidentialDesign andConstruction1999CCREUH1999BDCES2008ASHRAE90.1-2007C R C R C R R R C R R C REnvelope X X X X X X X X X X X X X X XHVAC X X X X X X X X X X X X X X XService HotWater andPump<strong>in</strong>gLight<strong>in</strong>gX X X X N.A. N.A. N.A. N.A. X X X N.A. X X XX N.A. X XX (<strong>in</strong> aseparatecode)X (<strong>in</strong> aseparatecode)IECC2006N.A. N.A. X X N.A. N.A. X X N.A. 28ElectricalPower X N.A. X X N.A. N.A. N.A. N.A. X N.A. N.A. N.A. X X N.A.Trade-offsand build<strong>in</strong>gperformanceapproachRenewableenergyX X X X X X X X X X N.A. X X X XX X X X. N.A. N.A. N.A. N.A. X X N.A. N.A. X X XMa<strong>in</strong>tenance N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A. X X X N.A. N.A. N.A.Note: C = commercial build<strong>in</strong>gs, R = residential build<strong>in</strong>gs, N.A = Not applicable. Ch<strong>in</strong>a has a separate code that covers light<strong>in</strong>g. In most countriesthat mention renewable energy <strong>in</strong> <strong>the</strong>ir build<strong>in</strong>g energy codes, renewable energy is not required, per se, but us<strong>in</strong>g site-generated renewable energyprovides exceptions to certa<strong>in</strong> code requirements.28 The 2009 version of <strong>the</strong> IECC now <strong>in</strong>cludes a provision for light<strong>in</strong>g.32


3.2 Size Threshold for Compliance <strong>in</strong> <strong>New</strong> Build<strong>in</strong>gsKey F<strong>in</strong>d<strong>in</strong>gs APP countries have different size thresholds for compliance with build<strong>in</strong>g energycodes. This difference can result <strong>in</strong> important discrepancies <strong>in</strong> <strong>the</strong> energyefficiency of build<strong>in</strong>gs that do not need to comply. The codes <strong>in</strong> Ch<strong>in</strong>a and India cover only large build<strong>in</strong>gs. South Korea has m<strong>in</strong>imum mandatory <strong>in</strong>sulation requirements for all build<strong>in</strong>gsand <strong>the</strong> BDCES provides additional requirements for large-scale build<strong>in</strong>gs. Japan has recently lowered <strong>the</strong> compliance threshold for commercial build<strong>in</strong>gsfrom 2,000 to 300 square meters Australia, Canada and <strong>the</strong> United States do not have a m<strong>in</strong>imum size threshold forany type of conditioned build<strong>in</strong>g, although large residential build<strong>in</strong>gs areregulated under <strong>the</strong> “commercial” code.Countries ma<strong>in</strong>ta<strong>in</strong> different size thresholds for build<strong>in</strong>gs covered by <strong>the</strong>ir build<strong>in</strong>genergy codes. Australia, Canada and <strong>the</strong> United States have many s<strong>in</strong>gle-family homes,and <strong>the</strong>se countries typically have different sets of requirements for small residential ando<strong>the</strong>r build<strong>in</strong>gs. In <strong>the</strong>se cases, <strong>the</strong>re may not be a m<strong>in</strong>imum requirement; however, if aresidential build<strong>in</strong>g is large, it may fall under <strong>the</strong> “commercial” or “build<strong>in</strong>g” code. Indiahas a s<strong>in</strong>gle code for large build<strong>in</strong>gs. Ch<strong>in</strong>a has separate requirements for residential ando<strong>the</strong>r types of build<strong>in</strong>gs, but both sets of requirements cover only large build<strong>in</strong>gs. Japanhas two separate codes – much like Australia, Canada and <strong>the</strong> United States – but it onlyregulates non-residential build<strong>in</strong>gs of more than 300 square meters (it recently loweredthis threshold from 2,000 square meters. Its residential code covers all residentialbuild<strong>in</strong>gs, and <strong>the</strong> difference of size is handled through envelope calculations that factor<strong>in</strong> <strong>the</strong> number of stories. Table 8 summarizes <strong>the</strong> compliance thresholds <strong>in</strong> <strong>the</strong> APPcountries.Table 8 M<strong>in</strong>imum Size of Build<strong>in</strong>gs Regulated by Build<strong>in</strong>g <strong>Energy</strong> CodeResidentialO<strong>the</strong>r Build<strong>in</strong>gsAUS No m<strong>in</strong>imum No m<strong>in</strong>imumCAN No m<strong>in</strong>imum No m<strong>in</strong>imumCHN Large build<strong>in</strong>gs, but code hasno specific def<strong>in</strong>itionLarge build<strong>in</strong>gs, but code has no specificdef<strong>in</strong>itionIND Approximately 1,000 m 2 Approximately 1,000 m 2JAP No m<strong>in</strong>imum 300 m 2KOR 50 households <strong>in</strong> build<strong>in</strong>g(BDCES)M<strong>in</strong>imum <strong>in</strong>sulation for allbuild<strong>in</strong>gs (RBFCO)Depends on type: ex. offices, education andresearch: 3,000 m 2 , hotels/motels 2,000 m 2(BDCES)M<strong>in</strong>imum <strong>in</strong>sulation for all build<strong>in</strong>gs (RBFCO)USA No m<strong>in</strong>imum No m<strong>in</strong>imum33


3.3 Build<strong>in</strong>g EnvelopeKey F<strong>in</strong>d<strong>in</strong>gs All countries have requirements regard<strong>in</strong>g <strong>the</strong> build<strong>in</strong>g envelope <strong>in</strong> <strong>the</strong>ir build<strong>in</strong>genergy codes. These requirements cover <strong>the</strong>rmal characteristics of build<strong>in</strong>genvelope components such as roofs, walls and w<strong>in</strong>dows. Australia, Ch<strong>in</strong>a, India, Japan, South Korea and <strong>the</strong> United States address shad<strong>in</strong>g<strong>in</strong> <strong>the</strong>ir build<strong>in</strong>g energy codes. Australia, Ch<strong>in</strong>a, India, Japan and South Koreaalso mention orientation <strong>in</strong> <strong>the</strong>ir build<strong>in</strong>g energy codes. In compar<strong>in</strong>g U-factors for walls, roofs, floors and w<strong>in</strong>dows across four climatezones, no one country stands out as hav<strong>in</strong>g consistently <strong>the</strong> most str<strong>in</strong>gentrequirements. India tends to have relatively low U-factors (or high efficiencyrequirements), although at present, <strong>the</strong> prescriptive requirements are notmandatory. Japan has relatively str<strong>in</strong>gent requirements regard<strong>in</strong>g w<strong>in</strong>dows <strong>in</strong>commercial build<strong>in</strong>gs. Ch<strong>in</strong>a tends to have lower requirements than <strong>the</strong> majorityof countries <strong>in</strong> many categories, but not by dramatic amounts. The United States<strong>in</strong> some categories has <strong>the</strong> most str<strong>in</strong>gent requirements, and <strong>in</strong> o<strong>the</strong>rs is <strong>the</strong> leaststr<strong>in</strong>gent, particularly <strong>in</strong> <strong>the</strong> warmest zone. For example, <strong>the</strong> United States overallhas <strong>the</strong> most str<strong>in</strong>gent requirements for roof <strong>in</strong>sulation <strong>in</strong> s<strong>in</strong>gle-family homes.Canada has comparatively str<strong>in</strong>gent envelope requirements for build<strong>in</strong>gs heatedwith electricity, but generally less str<strong>in</strong>gent requirements for o<strong>the</strong>r types ofbuild<strong>in</strong>gs.Build<strong>in</strong>g envelope refers to build<strong>in</strong>g components that separate <strong>in</strong>door space from outdoorspace, exterior air or <strong>the</strong> ground. The ma<strong>in</strong> build<strong>in</strong>g envelope components <strong>in</strong>clude <strong>the</strong>roof, walls, floors, doors, w<strong>in</strong>dows and skylights. The <strong>the</strong>rmal characteristics of <strong>the</strong>build<strong>in</strong>g envelope are widely believed to be <strong>the</strong> most important topic <strong>in</strong> build<strong>in</strong>g energycodes from <strong>the</strong> perspective of impact on energy use. Build<strong>in</strong>g energy codes <strong>in</strong> all APPcountries cover build<strong>in</strong>g envelope requirements among one of <strong>the</strong> first issues addressed <strong>in</strong><strong>the</strong> text of <strong>the</strong> codes (Table 8).Table 9 Build<strong>in</strong>g Envelope <strong>in</strong> Build<strong>in</strong>g <strong>Energy</strong> Codes of APP CountriesSection Title (s)Ma<strong>in</strong> ContentBuild<strong>in</strong>gEnvelopeAUSBCA 2007ExternalW<strong>in</strong>dowBuild<strong>in</strong>g Seal<strong>in</strong>gBuild<strong>in</strong>g envelope must have <strong>in</strong>sulation that complies with<strong>the</strong> Australian-<strong>New</strong> Zealand standards (AS/NZS 4859) 29 .There are detailed provisions on how <strong>in</strong>sulation is to be<strong>in</strong>stalled, and requirements on <strong>the</strong> degree of <strong>the</strong>rmalresistance <strong>in</strong> roofs, walls, floors and skylights.<strong>Energy</strong> efficiency characteristics of w<strong>in</strong>dows.Build<strong>in</strong>g seal<strong>in</strong>g for chimneys and flues, skylights, w<strong>in</strong>dowsand doors, exhaust fans, construction of roofs, walls andfloors, and evaporative coolers.29 AS/NZS 4859 provides general criteria, technical provisions and test procedures for build<strong>in</strong>g <strong>in</strong>sulation.34


CANMNECB1997MNECH1997CHNCommercialBuild<strong>in</strong>gs2005CHNResidentialBuild<strong>in</strong>gCodes <strong>in</strong>Heat<strong>in</strong>g,HSCW andHSWWZonesINDECBC2008JAPCCREUB2008JAPDCGREUH1999Build<strong>in</strong>gEnvelopeDesign forArchitecture andBuild<strong>in</strong>gThermalEng<strong>in</strong>eer<strong>in</strong>gThermal Designfor Architectureand Build<strong>in</strong>gEnvelope(Heat<strong>in</strong>g andHSCW),Envelope(HSWW)EnvelopeHeat Lossthrough <strong>the</strong>Build<strong>in</strong>gEnvelopeThermalInsulationThermalPerformance of<strong>the</strong> Build<strong>in</strong>gEnvelopeThermalPerformance ofW<strong>in</strong>dows andDoors“Components of <strong>the</strong> build<strong>in</strong>g envelope shall be <strong>in</strong> accordancewith prov<strong>in</strong>cial, territorial or municipal build<strong>in</strong>g regulations,or, <strong>in</strong> <strong>the</strong> absence of such regulations, with <strong>the</strong> NationalBuild<strong>in</strong>g Code of Canada.”The mandatory envelope requirements also cover 1) abovegroundcomponents of <strong>the</strong> build<strong>in</strong>g envelope, 2) build<strong>in</strong>gcomponents <strong>in</strong> contact with <strong>the</strong> ground, and 3) air tightness.The prescriptive requirements for <strong>the</strong> build<strong>in</strong>g envelope cover1) <strong>the</strong> above-ground components of <strong>the</strong> build<strong>in</strong>g envelopeand 2) special <strong>in</strong>terior temperature conditions (which is onlyfor MNECB).The mandatory requirements for compliance, achieved wi<strong>the</strong>i<strong>the</strong>r <strong>the</strong> prescriptive requirements or trade-off options,<strong>in</strong>clude requirements for roofs, opaque walls, floors, verticalfenestration and skylights. The voluntary requirements for <strong>the</strong><strong>in</strong>side surface temperature of <strong>the</strong>rmal bridges <strong>in</strong> envelope,exterior w<strong>in</strong>dow shad<strong>in</strong>g, natural ventilation, etc.This section provides U-factors for build<strong>in</strong>g envelopes byoutdoor temperature, shape coefficient, W<strong>in</strong>dow-to-WallRatio (WWR), orientation and o<strong>the</strong>r prescriptive criteria <strong>in</strong><strong>the</strong> heat<strong>in</strong>g, HSCW, and HSWW zones.ECBC requires <strong>the</strong> build<strong>in</strong>g envelope to comply with <strong>the</strong>mandatory provisions and ei<strong>the</strong>r <strong>the</strong> prescriptive criteria or<strong>the</strong> trade-off options. Build<strong>in</strong>g designers can also use <strong>the</strong>whole build<strong>in</strong>g performance provisions of <strong>the</strong> code tocompensate for high performance <strong>in</strong> one area of compliance,such as <strong>the</strong> envelope, with somewhat lower performance <strong>in</strong>ano<strong>the</strong>r (for example, light<strong>in</strong>g).This section <strong>in</strong>cludes a po<strong>in</strong>t system address<strong>in</strong>g specific<strong>in</strong>sulation and w<strong>in</strong>dow requirements, <strong>the</strong> orientation of outerwalls and <strong>the</strong> build<strong>in</strong>g shape. Po<strong>in</strong>ts required vary based onclimate zone and build<strong>in</strong>g function.This section provides three provisions related to <strong>the</strong> <strong>the</strong>rmal<strong>in</strong>sulation of <strong>the</strong> build<strong>in</strong>g envelope (build<strong>in</strong>g envelope design,<strong>in</strong>sulation material construction and air-tight layers).This section requires that build<strong>in</strong>g components be <strong>in</strong>sulated.Specifically, external roofs, ceil<strong>in</strong>gs, walls and floors shouldbe <strong>in</strong>sulated, while sheds, garages, attics, eaves, sleeve wallsand verandas do not have to be <strong>in</strong>sulated.This section provides <strong>the</strong> maximum heat transfer coefficient(U-factors) of w<strong>in</strong>dows and doors.35


JAPCCREUH1999KORBDCES2008USAASHRAE90.1-2007USAIECC 2006MaximumAnnual Heat<strong>in</strong>gand Cool<strong>in</strong>gLoads byClimate ZoneStandards forEquivalentClearance AreasCondensationControlConstructionDesign CriteriaEnvelopeBuild<strong>in</strong>gEnvelopeRequirementsThis section provides maximum allowable annual heat<strong>in</strong>g andcool<strong>in</strong>g loads and related parameters and calculationmethods.This section def<strong>in</strong>es equivalent clearance areas, which appearto relate to air exchange through <strong>the</strong> build<strong>in</strong>g envelope.To prevent condensation that may reduce <strong>in</strong>sulationperformance and house durability, <strong>the</strong> property owner shouldprevent surface moisture condensation and moisturecondensation with<strong>in</strong> walls with proper measures.The Construction Design Criteria section <strong>in</strong>cludes bothmandatory items and recommended items. The mandatoryitems cover <strong>the</strong>rmal <strong>in</strong>sulation and heat resistancerequirements for <strong>the</strong> build<strong>in</strong>g envelope such as regional U-factor values by build<strong>in</strong>g envelope component and regionspecificthicknesses of <strong>in</strong>sulat<strong>in</strong>g materials. Therecommended items provide suggestions on build<strong>in</strong>gorientation, seal<strong>in</strong>g, active use of natural light<strong>in</strong>g, shad<strong>in</strong>gand natural ventilation for energy conservation.The build<strong>in</strong>g envelope shall comply with <strong>the</strong> mandatoryprovisions and ei<strong>the</strong>r <strong>the</strong> prescriptive criteria or <strong>the</strong> trade-offoption. Alternatively, <strong>the</strong> whole build<strong>in</strong>g energy costapproach <strong>in</strong> <strong>the</strong> <strong>Energy</strong> Cost Budget Method (ASHRAE 90.1-2007) or Total Build<strong>in</strong>g Performance Method (IECC 2006)may be used. The mandatory requirements coverrequirements for <strong>in</strong>sulation <strong>in</strong>stallation, w<strong>in</strong>dow and doorrat<strong>in</strong>g and build<strong>in</strong>g envelope seal<strong>in</strong>g to m<strong>in</strong>imize air leakage.This <strong>in</strong>cludes seal<strong>in</strong>g of build<strong>in</strong>g envelope penetrations,vestibules and load<strong>in</strong>g dock wea<strong>the</strong>r seals. In addition, <strong>the</strong>requirements cover how <strong>in</strong>sulation, w<strong>in</strong>dows and doorsshould be labeled. The prescriptive requirements (which areopen to trade-offs with alternate paths of compliance) coverrequirements for roofs, opaque walls, below-grade walls,foundations, vertical fenestration (or wall w<strong>in</strong>dow) andskylights.This section provides mandatory and prescriptive provisionson <strong>in</strong>sulation requirements, fenestration, air leakage, moisturecontrol, maximum fenestration U-factor and solar heat ga<strong>in</strong>coefficient (SHGC).Based on <strong>the</strong> data availability and geographic location of APP countries, this sectioncompares <strong>the</strong>rmal characteristics of roof, external wall, floor and w<strong>in</strong>dow for a generic10-floor office build<strong>in</strong>g <strong>in</strong> hot, warm, cool and cold climate zones (Table 8). Thecomparison also <strong>in</strong>cludes Ch<strong>in</strong>a’s residential build<strong>in</strong>gs because <strong>the</strong>y are mostly multifamilyapartment build<strong>in</strong>gs, and Ch<strong>in</strong>a has a grow<strong>in</strong>g stock of high-rise residentialbuild<strong>in</strong>gs. In addition, Figures 1 and 2 compare <strong>the</strong> wall and roof requirements for<strong>in</strong>dividual homes <strong>in</strong> <strong>the</strong> APP countries with separate codes for such build<strong>in</strong>gs.36


The comparison study is focused on four climate zones: hot, warm, cool, and very cold.The <strong>the</strong>rmal criteria of <strong>the</strong>se four climate zones are based on International Climate ZoneDef<strong>in</strong>itions of IECC 2006. Each zone conta<strong>in</strong>s cities of different countries (Table 9).Table 10 Climate Zones and Cities Covered <strong>in</strong> <strong>the</strong> Comparison of Maximum U-factor for Build<strong>in</strong>gEnvelope <strong>in</strong> APP CountriesClimate Zone Thermal Criteria Representative CitiesHot 5,000 < CDD10 o C Darw<strong>in</strong> (AUS), Ha<strong>in</strong>an (CHN), <strong>New</strong>Delhi (IND) and Miami (USA)Warm2,500 < CDD10 o C


This study selects <strong>the</strong> midpo<strong>in</strong>t score levels for comparison (specifically, <strong>the</strong>second score level for roofs and walls, and <strong>the</strong> fourth to sixth levels forw<strong>in</strong>dows). 30 Japan’s build<strong>in</strong>g energy codes place heavy emphasis on SHGC. Forexample, <strong>the</strong> highest score for SHGC is 90 (for most of Japan), 50 (<strong>in</strong> <strong>the</strong> coldzone), and 170 (<strong>in</strong> <strong>the</strong> tropical zone), while <strong>the</strong> highest score for U-factors ofwalls and w<strong>in</strong>dows, respectively, is 30.South Korea also uses a po<strong>in</strong>t system to measure build<strong>in</strong>g performance <strong>in</strong> <strong>the</strong>BDCES. The m<strong>in</strong>imum score should be 60 for <strong>the</strong> whole build<strong>in</strong>g (<strong>in</strong>clud<strong>in</strong>gconstruction and mechanical and electronic design criteria). For <strong>the</strong> build<strong>in</strong>genvelope, <strong>the</strong>re are five levels of <strong>the</strong>rmal requirements. South Korea providesm<strong>in</strong>imum R-value by region for roofs, walls and floors for all build<strong>in</strong>gs. For <strong>the</strong>envelope of large build<strong>in</strong>g, <strong>the</strong>re are five levels of <strong>the</strong>rmal requirements (overallenvelope U-value) that are calculated by averag<strong>in</strong>g <strong>the</strong> U-value both w<strong>in</strong>dow andwall which varies depend<strong>in</strong>g on w<strong>in</strong>dow to wall ratio. The RBFCO providesadditional prescriptive requirements for <strong>in</strong>sulation; <strong>the</strong> envelope analysis relies on<strong>the</strong> RBFCO requirements. The maximum U-factors <strong>in</strong> <strong>the</strong> United States commercial build<strong>in</strong>g energy codesare categorized by build<strong>in</strong>g materials. U-factor and SHGC are two <strong>in</strong>dicators forw<strong>in</strong>dow <strong>the</strong>rmal <strong>in</strong>sulation.Four countries have jurisdictions <strong>in</strong> <strong>the</strong> hot climate zone <strong>in</strong>clud<strong>in</strong>g Australia, Ch<strong>in</strong>a, India,and <strong>the</strong> United States. In this zone, Australia has <strong>the</strong> most str<strong>in</strong>gent requirements forroofs and floors, while India has <strong>the</strong> most str<strong>in</strong>gent requirements for walls. The UnitedStates has comparatively str<strong>in</strong>gent requirements for roofs and solar heat ga<strong>in</strong> coefficient<strong>in</strong> w<strong>in</strong>dows. It has a wide range of requirements for walls, and <strong>the</strong> least str<strong>in</strong>gentrequirements for floors. Ch<strong>in</strong>a has relatively weak requirements <strong>in</strong> all categories, but it isnot <strong>the</strong> least str<strong>in</strong>gent <strong>in</strong> any s<strong>in</strong>gle category. Figure 1 shows a comparison of <strong>the</strong> roofrequirements <strong>in</strong> this zone, while Table 10 provides a more comprehensive comparison ofall <strong>the</strong> key envelope requirements <strong>in</strong> this zone. Each of <strong>the</strong> comparative tables <strong>in</strong> thissection highlight one country under each component. This is <strong>the</strong> country that has <strong>the</strong> moststr<strong>in</strong>gent requirements (for <strong>the</strong> majority of its commercial build<strong>in</strong>gs) <strong>in</strong> a given category.Several factors can affect <strong>the</strong> str<strong>in</strong>gency of envelope requirements <strong>in</strong> different countries.<strong>Energy</strong> prices vary among countries. Most countries conduct cost-benefit analyses of <strong>the</strong>requirements before adopt<strong>in</strong>g <strong>the</strong>m; differences <strong>in</strong> energy prices can lead to differentrecommendations on cost-effective requirements. Stakeholders can also play an importantrole, particularly <strong>in</strong> countries that use some type of stakeholder process or allow publiccomment before revis<strong>in</strong>g <strong>the</strong>ir standards. Insulation manufacturers may play aparticularly active role <strong>in</strong> one country, while w<strong>in</strong>dows manufacturers may be moreprom<strong>in</strong>ent <strong>in</strong> ano<strong>the</strong>r. In some cases, if an <strong>in</strong>dustry like <strong>in</strong>sulation is less vocal, it mayalso <strong>in</strong>dicate that <strong>the</strong>re are few products available on <strong>the</strong> local market. The productsavailable and <strong>the</strong> role of <strong>in</strong>dustry can thus affect <strong>the</strong> requirements adopted.30 We selected <strong>the</strong> midpo<strong>in</strong>t levels <strong>in</strong>stead of <strong>the</strong> maximum U-factors because Japan’s commercial code hasno maximum <strong>in</strong> most categories. In addition, s<strong>in</strong>ce Japan does not have prescriptive commercialrequirements – only trade-off ones – it was important to pick numbers that would lead to a build<strong>in</strong>g thatcomplied, but did significantly exceed <strong>the</strong> compliance level <strong>in</strong> order to provide a good po<strong>in</strong>t of comparison.38


Figure 1 Comparison of Roof U-factor Requirements <strong>in</strong> <strong>the</strong> Hot Zone1.210.8U-factor0.6Roof (Low)Roof (High)Midpo<strong>in</strong>t0.40.20Ha<strong>in</strong>an, CHN(Residential)Ha<strong>in</strong>an, CHN(Commercial)Miami, USA <strong>New</strong> Delhi, IND Darw<strong>in</strong>, AUSTable 11 Thermal Characteristics of Roofs, Walls, Floors and W<strong>in</strong>dows <strong>in</strong> <strong>the</strong> Hot ZoneMaximum U-factors W/(m²·K)W<strong>in</strong>dow IndicatorsCitiesSuspendedRoof External WallFloorAggregate conductance factorDarw<strong>in</strong>0.31 0.56 0.67 not directly comparable with u-AUSfactors 31Ha<strong>in</strong>anCHN<strong>New</strong> DelhiIND0.90 1.50 1.50Heavyconstruction:1.0, lightconstruction:0.50.41(O<strong>the</strong>rs)0.26 (24-hourbuild<strong>in</strong>gs),Heavyconstruction:1.0to 2.0N.A.0.41 N.A.Maximum U-factor: 3.0 to 6.5by WWR; shad<strong>in</strong>g coefficient,SC (east, south and west /north): 0.50/0.60 to 0.35/0.45by WWRMaximum U-factor: 2.00 to6.50 by WWR and outdoorconditionsMaximum U-factor is 3.30, andmaximum SHGC is 0.20 to0.2531RE Horne (2005) International comparison of build<strong>in</strong>g energy performance standards.39


MiamiUSA0.36(Insulationabove deck)to 0.37(Metalbuild<strong>in</strong>g)3.30 (Mass), 0.64(Metal build<strong>in</strong>g),0.70 (Steelframed)1.83 (Mass),1.99 (Steeljoist)Maximum U-factor: 6.81,SHGC: 0.25, SHGC of northw<strong>in</strong>dow: 0.33 to 0.61Note: Italicized text refers to residential build<strong>in</strong>gs. Shaded boxes and bold text highlight <strong>the</strong> moststr<strong>in</strong>gent requirements <strong>in</strong> a given category <strong>in</strong> <strong>the</strong> table. When countries have a range of requirements tocover different types of situations, <strong>the</strong> midpo<strong>in</strong>t of this range is used as <strong>the</strong> po<strong>in</strong>t of comparison. N.A. =Not applicable.Six countries have towns or cities <strong>in</strong> <strong>the</strong> warm zone <strong>in</strong>clud<strong>in</strong>g Australia, Ch<strong>in</strong>a, India,Japan, South Korea and <strong>the</strong> United States. South Korea has <strong>the</strong> most str<strong>in</strong>gentrequirements for roofs, followed closely by India and <strong>the</strong> United States. India appears tohave more str<strong>in</strong>gent requirements for walls, followed by South Korea and <strong>the</strong> UnitedStates. Japan has <strong>the</strong> strictest <strong>the</strong>rmal requirements for w<strong>in</strong>dows followed by <strong>the</strong> UnitedStates. There is a significant difference <strong>in</strong> <strong>the</strong> requirements for roof and walls <strong>in</strong> Ch<strong>in</strong>aand Japan compared to <strong>the</strong> o<strong>the</strong>r countries <strong>in</strong> this climate zone. At <strong>the</strong> same time, forlarge office build<strong>in</strong>gs <strong>in</strong> a warm climate, solar heat ga<strong>in</strong> through w<strong>in</strong>dows is typically <strong>the</strong>most important envelope issue for energy efficiency. Figure 2 highlights <strong>the</strong> wall values,while Table 11 provides details on all <strong>the</strong> major envelope requirements.Figure 2 Comparison of U-factor Requirements for External Walls <strong>in</strong> <strong>the</strong> Warm Zone1.61.41.2U-factor10.80.6Roof (Low)Roof (High)Midpo<strong>in</strong>t0.40.20Inchon, KoreaShanghai,CHN(Residential)Tokyo, JAP Atlanta, USA Shanghai,CHN(Commercial)Shillong, INDPerth, AUS40


Table 12 Thermal Characteristics of Roofs, Walls, Floors and W<strong>in</strong>dows <strong>in</strong> <strong>the</strong> Warm ZoneCitiesPerth/GuildfordAUSShanghaiCHNShillong 33INDTokyo 34JAPInchon 35KORAtlantaUSAMaximum U-factors W/(m²·K)Roof External Wall Suspended Floor0.31 0.56 N.A.0.70 1.00 1.0Heavyconstruction:0.8 to 1.00.41 (O<strong>the</strong>rs)0.26 (24-hourbuild<strong>in</strong>gs)Heavyconstruction:1.0 to 1.50.35 (O<strong>the</strong>rs) to0.37 (24-hourbuild<strong>in</strong>gs)2.0N.A.1.52 to 0.76 1.33 to 1.00 N.A.0.29 0.470.27(Insulationabove deck)to 0.37(Metalbuild<strong>in</strong>g)0.70 (Mass),0.64 (Metalbuild<strong>in</strong>g), 0.48(Steel framed)0.35 (Floorheat<strong>in</strong>g) to0.41(Non floorheat<strong>in</strong>g)0.61 (Mass), 0.30(Steel-joist)W<strong>in</strong>dow IndicatorsAggregate conductancefactor not directlycomparable with U-factors 32Maximum U-factor: 4.7to 2.5 by WWR; SC:0.55/- to 0.40/0.50 byWWRMaximum U-factor:2.50 to 4.70 by WWRand outdoor conditionsMaximum U-factor is3.30, andmaximum SHGC is0.51Maximum U-factor is2.50 to 1.00,SHGC: 0.30 to 0.15.Maximum U-factor:3.0 (Apartment) to 3.4(Commercial)Maximum U-factor:3.24 to 2.61 by WWRSHGC: 0.39 to 0.19 byWWR,SHGC of northw<strong>in</strong>dow: 0.49 to 0.26by WWRNote: Italicized text refers to residential build<strong>in</strong>gs. Shaded boxes and bold text highlight <strong>the</strong> moststr<strong>in</strong>gent requirements <strong>in</strong> a given category. When countries have a range of requirements to coverdifferent types of situations, <strong>the</strong> midpo<strong>in</strong>t of this range is used as <strong>the</strong> po<strong>in</strong>t of comparison. N.A. = Notapplicable.32 For more <strong>in</strong>formation, please see R.E. Horne et al. 2005. International comparison of build<strong>in</strong>g energyperformance standards, http://www.abc.net.au/4corners/content/2007/20070625_efficiency/RMIT.pdf.33 The ECO-III project office <strong>in</strong> India k<strong>in</strong>dly provided <strong>in</strong>formation on climate conditions <strong>in</strong> India’s majorcities, which we used <strong>in</strong> this analysis.34 The maximum U-factor presented for Japan’s commercial build<strong>in</strong>g energy codes represents <strong>the</strong> values <strong>in</strong><strong>the</strong> midpo<strong>in</strong>t score for each category <strong>in</strong> Japan’s scor<strong>in</strong>g system.35 The maximum U-factor <strong>in</strong> Korea build<strong>in</strong>g energy codes is applied to all build<strong>in</strong>gs regardless of build<strong>in</strong>gsize and usage based on <strong>the</strong> RBFCO. In some specific cases, it is possible that more str<strong>in</strong>gent requirementsfrom <strong>the</strong> BDCES could apply based on <strong>the</strong> BDCES’s scor<strong>in</strong>g system.41


Six countries have jurisdictions <strong>in</strong> <strong>the</strong> cool zone <strong>in</strong>clud<strong>in</strong>g Australia, Canada, Ch<strong>in</strong>a,India, Japan and <strong>the</strong> United States. Australia has <strong>the</strong> strongest roof requirements,followed by certa<strong>in</strong> categories of build<strong>in</strong>gs <strong>in</strong> Canada, India and <strong>the</strong> United States. Indiahas <strong>the</strong> highest <strong>the</strong>rmal requirements for walls, followed by <strong>the</strong> wall requirements <strong>in</strong>Canada for electrically heated build<strong>in</strong>gs, and Ch<strong>in</strong>a (commercial build<strong>in</strong>gs with a shapecoefficient between 0.3 and 0.4). Canada has <strong>the</strong> most str<strong>in</strong>gent requirements for elevatedfloors. Japan has <strong>the</strong> highest U-values for w<strong>in</strong>dows. Figure 3 highlights <strong>the</strong> range ofmaximum U-factors for w<strong>in</strong>dows <strong>in</strong> <strong>the</strong> cool zone across <strong>the</strong> APP region. Table 12 belowprovides more detail on all <strong>the</strong> envelope requirements <strong>in</strong> this zone.Figure 3 Comparison of W<strong>in</strong>dow U-factor Requirements <strong>in</strong> <strong>the</strong> Cool Zone54.543.5U-factor32.52Low maximumHigh maximumMidpo<strong>in</strong>t1.510.50Lanzhou, CHN(Residential)Chicago, USALanzhou, CHN(Commercial)Vancouver,CANMukteswar, INDSapporo, JAP42


Table 13 Thermal Characteristics of Roofs, Walls, Floors and W<strong>in</strong>dows <strong>in</strong> <strong>the</strong> Cool ZoneCitiesMaximum U-factors W/(m²·K)W<strong>in</strong>dow IndicatorsRoof Wall Floor W<strong>in</strong>dowAggregate conductanceThredbofactor not directly0.23 0.56 0.40AUScomparable with U-factors 360.41 (Type III 39 (Electricity), 0.41 (Type II 1.90 to 1.30 (Electricity)VancouverCAN 37 Electricity), and 0.81 (O<strong>the</strong>rs) Electricity), and 3.40 to 1.70 (O<strong>the</strong>rs)0.47 (Type IIIand 0.47 (Type by WWR0.23 (Type II 38 ), 0.45 0.22 (Type I), Maximum U-factor:O<strong>the</strong>rs 40 )II O<strong>the</strong>rs)0.45-0.55 0.50-0.60 0.50-0.60LanzhouMukteswarINDSapporoJAPChicagoUSA0.50-0.70 0.62-1.10 0.500.41 (O<strong>the</strong>rs)0.26 (24-hourbuild<strong>in</strong>gs)0.35 (O<strong>the</strong>rs)to 0.40 (24-hourbuild<strong>in</strong>g)N.A.1.52 to 0.76 0.76 to 0.38 N.A.0.36 (Insulationabove deck) to0.37 (Metalbuild<strong>in</strong>g)0.70 (Mass),0.64 (Metalbuild<strong>in</strong>g),0.48 (Steelframed)0.50 (Mass),0.30 (Steeljoist)Maximum U-factor: 3.5 to2.0 by WWR; SC: 0.70 to0.50Maximum U-factor:4.70 to 4.00Maximum U-factor is3.30, and maximum SHGCis 0.51Maximum U-factor is 1.50(excluded 1.50) to 0.75;solar heat ga<strong>in</strong> coefficient is0.30 (excluded 0.30) to0.05Maximum U-factor: 3.24 to2.61 by WWRSHGC: 0.49 to 0.26 byWWR,SHGC of north w<strong>in</strong>dow:0.49 to 0.36 by WWRNote: Italicized text refers to residential build<strong>in</strong>gs. Shaded boxes and bold text highlight <strong>the</strong> moststr<strong>in</strong>gent requirements <strong>in</strong> a given category. When countries have a range of requirements to coverdifferent types of situations, <strong>the</strong> midpo<strong>in</strong>t of this range is used as <strong>the</strong> po<strong>in</strong>t of comparison. N.A. = Notapplicable.Canada, Ch<strong>in</strong>a, India and <strong>the</strong> United States all have jurisdictions <strong>in</strong> <strong>the</strong> very cold zone (<strong>in</strong>India, <strong>the</strong>se jurisdictions are <strong>in</strong> certa<strong>in</strong> mounta<strong>in</strong>ous regions). Canada has <strong>the</strong> strongest36RE Horne (2005) International comparison of build<strong>in</strong>g energy performance standards.37 Vancouver International A mentioned <strong>in</strong> ASHRAE 90.1-2007.38 Type II of roof and Type I of floor refer to parallel-chord trusses and joist-type roofs.39 Type III of roof and Type II of floor refer to all o<strong>the</strong>r roofs (e.g., concrete decks with rigid <strong>in</strong>sulation).40 “O<strong>the</strong>rs” refer to o<strong>the</strong>r pr<strong>in</strong>cipal heat<strong>in</strong>g sources, such as propane, oil, heat pumps and natural gas.41 The Ch<strong>in</strong>ese envelope requirements <strong>in</strong> <strong>the</strong> cold and very cold zones vary based on <strong>the</strong> shape of <strong>the</strong>build<strong>in</strong>g. We have provided <strong>the</strong> range.43


<strong>the</strong>rmal requirements for roofs, floors and w<strong>in</strong>dows because it has particularly str<strong>in</strong>gentrequirements for electrically heated build<strong>in</strong>gs. Canadian U-factors for build<strong>in</strong>gs withnatural gas heat<strong>in</strong>g are much lower. The United States has <strong>the</strong> most str<strong>in</strong>gentrequirements for walls. Exclud<strong>in</strong>g Canada’s electrically heated build<strong>in</strong>gs, India has <strong>the</strong>most str<strong>in</strong>gent wall requirements and Ch<strong>in</strong>a has <strong>the</strong> most str<strong>in</strong>gent w<strong>in</strong>dow U-values.Ch<strong>in</strong>a’s <strong>the</strong>rmal requirements for opaque build<strong>in</strong>g envelope components for commercialbuild<strong>in</strong>gs are average for this climate zone. Figure 4 highlights <strong>the</strong> w<strong>in</strong>dow U-factors,while Table 13 provides details on <strong>the</strong> range of requirements <strong>in</strong> <strong>the</strong> very cold climatezone.Figure 4 Comparison of Wall U-factor Requirements <strong>in</strong> <strong>the</strong> Very Cold Zone0.60.50.4U-factor0.3Low maximumHigh maximumMidpo<strong>in</strong>t0.20.10Harb<strong>in</strong>, CHN(Residential)Calgary, CANHarb<strong>in</strong>, CHN(Commercial)Duluth, USALeh, INDTable 14 Thermal Characteristics of Roofs, Walls, Floors and W<strong>in</strong>dows <strong>in</strong> <strong>the</strong> Very Cold ZoneCitiesCalgaryCANHarb<strong>in</strong>CHNMaximum U-factors W/(m²·K)W<strong>in</strong>dow IndicatorsRoof Wall Floor W<strong>in</strong>dow0.22 (Type I),Maximum U-factor:0.29 (Type II0.33 (Non natural2.80 to 1.40 (Non naturalby electricitygas), 0.55gas) and 3.40 to 1.90and o<strong>the</strong>r), and(Natural gas)(Natural gas) by WWR.0.47 (Type IIO<strong>the</strong>rs)0.23 (Type II),0.29 (Type IIInon naturalgas), and 0.47(Type IIInatural gas)0.30-0.35 0.40-0.45 0.40-0.45Maximum U-factor: 3.0 to1.7 by WWR0.30-0.50 0.40-0.52 0.30 to 0.52 Maximum U-factor: 2.544


LehIND 42DuluthUSA0.41 (O<strong>the</strong>rs)0.26 (24-hourbuild<strong>in</strong>gs),0.36(Insulationabove deck) to0.37 (Metalbuild<strong>in</strong>g)0.35 (O<strong>the</strong>rs) to0.40 (24-hourbuild<strong>in</strong>g)0.51 (Mass), 0.32(Metal build<strong>in</strong>g),0.36 (Steelframed)N.A.0.50 (Mass),0.30 (Steeljoist)Maximum U-factor is3.30, and maximum SHGCis 0.51Maximum U-factor: 3.24 to2.61 by WWRSHGC: 0.49 to 0.36 byWWR,SHGC of north w<strong>in</strong>dow:0.69Note: Italicized text refers to residential build<strong>in</strong>gs. Shaded boxes and bold text highlight <strong>the</strong> moststr<strong>in</strong>gent requirements <strong>in</strong> a given category. When countries have a range of requirements to coverdifferent types of situations, <strong>the</strong> midpo<strong>in</strong>t of this range is used as <strong>the</strong> po<strong>in</strong>t of comparison. N.A. = Notapplicable.APP countries that also have codes address<strong>in</strong>g energy requirements for <strong>in</strong>dividualhomes are Australia, Canada, Japan and <strong>the</strong> United States. Figures 5 and 6 look at <strong>the</strong>requirements for walls and roofs <strong>in</strong> such build<strong>in</strong>gs across a range of climate zones <strong>in</strong><strong>the</strong> APP countries. Not surpris<strong>in</strong>gly, requirements become more str<strong>in</strong>gent <strong>in</strong> <strong>the</strong> colderclimate zones. Overall, <strong>the</strong> United States has <strong>the</strong> most str<strong>in</strong>gent requirements for<strong>in</strong>sulation <strong>in</strong> roofs among <strong>the</strong>se four countries but no s<strong>in</strong>gle country appears to have <strong>the</strong>most str<strong>in</strong>gent wall requirements across all <strong>the</strong> climate zones.Figure 5 Maximum U-factors <strong>in</strong> Residential Roofs by Climate Zone 43Note: Climate zone 1 is hot, 2 is warm, 3 is cool, and 4 is very cold. See Table 9 for detailed descriptionsof <strong>the</strong>se zones.42 For more <strong>in</strong>formation, please seewww.usc.edu/dept/architecture/mbs/papers/ecs/94_aeshim/himalayas_94.html.43 The maximum U-factor for residential roofs <strong>in</strong> South Korea (0.29 W/m 2·K) is cited <strong>in</strong> RBFCO.45


Figure 6 Maximum U-factors <strong>in</strong> Residential Walls by Climate Zone 44Note: Climate zone 1 is hot, climate zone 2 is warm, 3 is cool and 4 is very cold. See Table 9 for detaileddescriptions of <strong>the</strong>se zones.3.4 HVACKey F<strong>in</strong>d<strong>in</strong>gs All APP countries have an HVAC section <strong>in</strong> <strong>the</strong>ir build<strong>in</strong>g energy codes. For HVAC equipment, most countries refer to o<strong>the</strong>r equipment standards and/orpresent energy performance standards <strong>in</strong> <strong>the</strong>ir HVAC section. Ch<strong>in</strong>a, Japan and South Korea address natural ventilation <strong>in</strong> <strong>the</strong>ir build<strong>in</strong>g energycodes.HVAC refers to heat<strong>in</strong>g, ventilation and air condition<strong>in</strong>g equipment and systems <strong>in</strong>build<strong>in</strong>gs and houses. As <strong>the</strong> most important mechanical component of a build<strong>in</strong>g, HVACcontributes to a major share of build<strong>in</strong>g energy use; hence, it is covered by all build<strong>in</strong>genergy codes <strong>in</strong> APP countries.Three sections <strong>in</strong> BCA 2007 (Australia) cover HVAC <strong>in</strong>clud<strong>in</strong>g 1) build<strong>in</strong>g seal<strong>in</strong>g (suchas chimneys and flues, w<strong>in</strong>dows and doors, exhaust fans and o<strong>the</strong>rs), 2) air movement(such as ventilation open<strong>in</strong>gs) and 3) air condition<strong>in</strong>g and ventilation systems (such asequipment efficiency).Build<strong>in</strong>g energy codes <strong>in</strong> Canada, Ch<strong>in</strong>a, India and <strong>the</strong> United States (ASHRAE 90.1–2007) provide both mandatory and prescriptive provisions on HVAC (Table 15).44 The maximum U-factor for residential walls <strong>in</strong> South Korea (0.47 W/m2·K) is cited <strong>in</strong> RBFCO.46


Table 15 HVAC <strong>in</strong> <strong>the</strong> Build<strong>in</strong>g <strong>Energy</strong> Codes of Canada, Ch<strong>in</strong>a, India and <strong>the</strong> United StatesMandatoryPrescriptiveCAN MNECB1997MNECH1997Asteriskeditems appearonly <strong>in</strong> <strong>the</strong>MNECB.Equipment siz<strong>in</strong>g/air distributionsystems/air <strong>in</strong>take and outletdampers/pip<strong>in</strong>g for heat<strong>in</strong>g and cool<strong>in</strong>gsystems/pump<strong>in</strong>g systemdesign*/equipment <strong>in</strong>stalledoutdoors/electric heat<strong>in</strong>gsystems*/recessed heaters/airdistribution systems serv<strong>in</strong>g space withspecial requirements*/ temperaturecontrols/ humidification/shutoff and setback*Equipment efficiency/ documentation*Fan system design*/cool<strong>in</strong>gwith outdoor air*/control ofheat<strong>in</strong>g, ventilat<strong>in</strong>g and aircondition<strong>in</strong>gsystems*/heatrecoveryCHNCommercial2005Residential-Heat<strong>in</strong>g1995Residential-HSCW2001Residential-HSWW2003Heat<strong>in</strong>g/ventilation and aircondition<strong>in</strong>g/heat<strong>in</strong>g and cool<strong>in</strong>gsources for heat<strong>in</strong>g and air condition<strong>in</strong>gsystems/monitor<strong>in</strong>g and controlHeat<strong>in</strong>g systems/pip<strong>in</strong>g and ductworkSystem design of cool<strong>in</strong>gsource/heat<strong>in</strong>g source/ventilation andair adjustmentSystem design of cool<strong>in</strong>gsource/heat<strong>in</strong>g source/ventilation andair adjustmentIND ECBC 2008 Natural ventilation/m<strong>in</strong>imumequipment efficiencies/controlsPip<strong>in</strong>g and ductwork/systembalanc<strong>in</strong>g/condensersUSAASHRAE90.1-2007Equipment efficiencies/verification andlabel<strong>in</strong>g/load calculations/controls/HVAC system construction and<strong>in</strong>sulation/completion requirementsHeat<strong>in</strong>g/ventilation and aircondition<strong>in</strong>g/heat<strong>in</strong>g andcool<strong>in</strong>g sources for heat<strong>in</strong>g andair condition<strong>in</strong>gsystems/monitor<strong>in</strong>g and controlHeat<strong>in</strong>g system designSystem design of cool<strong>in</strong>gsource/heat<strong>in</strong>gsource/ventilation and airadjustmentSystem design of cool<strong>in</strong>gsource/heat<strong>in</strong>gsource/ventilation and airadjustmentEconomizers/variable flowhydronic systemEconomizers /simultaneousheat<strong>in</strong>g and cool<strong>in</strong>glimitation/air system andcontrol/hydronic system designand control/heat rejectionequipment/energyrecovery/exhaust hoods/radian<strong>the</strong>at<strong>in</strong>g systemThere is an ongo<strong>in</strong>g effort <strong>in</strong> Canada to ma<strong>in</strong>ta<strong>in</strong> harmonization with HVAC, light<strong>in</strong>g andpower standards <strong>in</strong> <strong>the</strong> United States. Like Australia, Japan covers HVAC <strong>in</strong> severalsections of its build<strong>in</strong>g energy codes (Table 16). Unlike o<strong>the</strong>r APP countries, Japan puts aheavy emphasis on ventilation <strong>in</strong> residential houses (DCGREUH 1999 and CCREUH1999).47


Table 16 HVAC <strong>in</strong> Japan’s Build<strong>in</strong>g <strong>Energy</strong> CodesCommercialResidentialCCREUB 2008 DCGREUH 1999 CCREUH 19991. Aircondition<strong>in</strong>g andheat<strong>in</strong>g2. Mechanicalventilation1. Ventilation plans2. Heat<strong>in</strong>g, cool<strong>in</strong>g andhot water supply plans3. Airflow plans4. Information on1. Condensation control2. Ventilation volume3. Prevention of <strong>in</strong>door aircontam<strong>in</strong>ation from heat<strong>in</strong>g andhot water systems(except for aircondition<strong>in</strong>g andheat<strong>in</strong>g)Build<strong>in</strong>g Operations andMa<strong>in</strong>tenance (“How toLive”)4. Planned operation of heat<strong>in</strong>gand cool<strong>in</strong>g systems5. Ventilation routes for heatdissipationSouth Korea’s build<strong>in</strong>g energy code covers HVAC <strong>in</strong> two sections, construction designcriteria and mach<strong>in</strong>ery design criteria, with both mandatory and recommended provisions(Table 17).Table 17 The Ma<strong>in</strong> Focus of HVAC Requirements <strong>in</strong> South Korea’s Build<strong>in</strong>g <strong>Energy</strong> CodeMandatoryItemsRecommendedItemsConstruction DesignCriteriaDew condensation/preventionand seal<strong>in</strong>gLayout/seal<strong>in</strong>g/ventilationMach<strong>in</strong>ery Design CriteriaDesign temperature of HVAC/m<strong>in</strong>imumefficiency of pump/pipe <strong>in</strong>sulation/Outside air conditions/heat supply andtransmission facilitiesIndoor temperature/heat supplyfacilities/air condition<strong>in</strong>g facilities /waterdistribution facilities/ventilation andcontrol facilitiesASHRAE 90.1-2007 (United States) provides comprehensive m<strong>in</strong>imum efficiencyrequirements to a variety of air-condition<strong>in</strong>g equipment by a wide range of size category<strong>in</strong>clud<strong>in</strong>g 1) electronically operated unitary air conditioners and condens<strong>in</strong>g units; 2)electronically operated unitary and applied heat pumps and water chill<strong>in</strong>g packages; 3)electrically operated packaged term<strong>in</strong>al air conditioners, packaged term<strong>in</strong>al heat pumps,s<strong>in</strong>gle-package vertical air conditioners, s<strong>in</strong>gle-package vertical heat pumps, room airconditioners and room air-conditioner heat pumps; 4) warm air furnaces and comb<strong>in</strong>ationwarm air furnaces/air-condition<strong>in</strong>g units, warm air duct furnaces, and unit heaters; 5) gasand oil fired boilers; and 6) centrifugal chillers.MNECB (Canada) covers m<strong>in</strong>imum energy performance of air-condition<strong>in</strong>g equipmentwith fewer categories compared to ASHRAE 90.1-2007. S<strong>in</strong>ce MNECB was issued <strong>in</strong>1997, most of its performance requirements have been less str<strong>in</strong>gent than <strong>the</strong> samecategory <strong>in</strong> ASHRAE 90.1-2007 (Table 18).48


Table 18 Equipment Performance Standards for Air-cooled Unitary Air Conditioners – ElectricallyOperated (Except Packaged Term<strong>in</strong>al Air Conditioners and Room Air Conditioners)Class CAN (MNECB) USA (ASHRAE 90.1–2007)73-222.7 kW(250,000 – 760,000 Btu/h)> 222.7 kW(760,000 Btu/h)EER = 8.5IPLV = 7.5EER = 8.2IPLV = 7.5EER: 9.3 – 9.5 (before 1/1/2010); 9.8 –10.0 (as of 1/1/2010);IPLV: 9.5 – 9.7EER: 9.0 – 9.2 (before 1/1/2010); 9.5 –9.7 (as of 1/1/2010);IPLV: 9.2 – 9.4ECBC 2007 (India) refers to o<strong>the</strong>r Indian standards and ASHRAE 90.1-2004 for mostair-condition<strong>in</strong>g equipment. ECBC 2007 provides m<strong>in</strong>imum energy performance of aircooledchiller, centrifugal water-cooled chiller, and rotary screw and scroll compressor.While <strong>the</strong> m<strong>in</strong>imum energy performance of centrifugal chillers <strong>in</strong> ASHRAE 90.1-2007 iscategorized by both <strong>the</strong> exit<strong>in</strong>g chilled water temperature and <strong>the</strong> condenser flow rate, <strong>the</strong>requirements of ECBC 2007 are much simpler (Table 19).Table 19 M<strong>in</strong>imum Efficiencies for Centrifugal ChillersClass IND (ECBC 2007) USA (ASHRAE 90.1-2007)< 530 kW (or < 150 tons)COP = 5.80 COPstd = 5.00, COP: 3.84 to 7.09IPLV = 6.09 IPLVstd = 5.25, NPLV = 4.52 to 8.35>= 530 kW and


ItemsService water heat<strong>in</strong>g refers to heat<strong>in</strong>g of water for domestic or commercial purposes butnot for space heat<strong>in</strong>g. The section on service water heat<strong>in</strong>g standards often focuses on 1)<strong>the</strong> energy efficiency of water heat<strong>in</strong>g equipment/systems, 2) <strong>in</strong>sulation, 3) controls, and4) pools (Table 20). O<strong>the</strong>r issues addressed by <strong>in</strong>dividual APP countries <strong>in</strong>clude solarwater heat<strong>in</strong>g and water conservation.Table 20 Major Issues Covered under Service Water Heat<strong>in</strong>g <strong>in</strong> Build<strong>in</strong>g <strong>Energy</strong> Codes <strong>in</strong> APPCountriesAUS CAN IND JAP KOR USABCA 2007MNECB1997MNECH1997 ECBC2007CCREUB2008DCGREUH1999CCREUH1999 BDCES2008ASHRAE90.1-2007C R C R C R R C REquipment/system X X X X X X XX X XefficiencyInsulationX X X X X XN.A.X X XControls N.AX X N.A. XX X XN.A.N.A.Pools X X X N.A. N.A. X XNote: C = commercial build<strong>in</strong>gs, R = residential build<strong>in</strong>gs, N.A = Not applicable. Ch<strong>in</strong>a does not <strong>in</strong>cludeservice water heat<strong>in</strong>g <strong>in</strong> its build<strong>in</strong>g energy codes.Equipment/System <strong>Efficiency</strong> Us<strong>in</strong>g energy-efficient water heat<strong>in</strong>g is addressed by all<strong>the</strong> build<strong>in</strong>g energy codes studied except for those of Ch<strong>in</strong>a, which does not <strong>in</strong>cludeservice water heat<strong>in</strong>g <strong>in</strong> its commercial and residential build<strong>in</strong>g energy codes.In BCA 2007 (Australia), <strong>the</strong> <strong>the</strong>rmal efficiency of a gas-fired water heater, such as aboiler <strong>in</strong> a heat<strong>in</strong>g system for a build<strong>in</strong>g, must meet a <strong>the</strong>rmal efficiency 0.75 to 0.83, and0.76 to 0.80 for an oil-fired system. For design and <strong>in</strong>stallation of a hot water supplysystem for sanitary and food preparation, <strong>the</strong> BCA references AS/NZS 3500.4.MNECB (Canada) requires that service water heat<strong>in</strong>g equipment complies with <strong>the</strong>relevant federal, prov<strong>in</strong>cial or territorial standard and act; <strong>in</strong> <strong>the</strong> absence of such astandard and act, <strong>the</strong> energy efficiency performance requirements <strong>in</strong> MNECB should bemet. ASHRAE 90.1-2007 (<strong>the</strong> United States) and MNECB cover similar types of waterheat<strong>in</strong>g equipment (Table 21), with some differences <strong>in</strong> size categories. Japan’scommercial code also has requirements regard<strong>in</strong>g equipment and system efficiency.Table 21 Service Water Heat<strong>in</strong>g Equipment Performance StandardsClass CAN (MNECB) USA (ASHRAE 90.1-2007)Electric: > 12 kW SL 190L0.59 – 0.0019 V 0.59 – 0.0019 VECBC 2007 (India) refers to o<strong>the</strong>r Indian standards for equipment efficiencies.Insulation Thermal <strong>in</strong>sulation of water heat<strong>in</strong>g pip<strong>in</strong>g, storage, and ductwork isimportant to improve system energy efficiency.IECC200650


Australia mandates that central heat<strong>in</strong>g water pip<strong>in</strong>g located <strong>in</strong> an unconditionedspace must be <strong>the</strong>rmally <strong>in</strong>sulated to achieve fixed m<strong>in</strong>imum R-values rang<strong>in</strong>gfrom 0.2 (<strong>the</strong> hottest zone) to 0.6 (<strong>the</strong> coldest zone). Heat<strong>in</strong>g and cool<strong>in</strong>gductwork and fitt<strong>in</strong>gs must be sealed aga<strong>in</strong>st air loss and achieve set m<strong>in</strong>imumtotal R-values rang<strong>in</strong>g from 0.4 (for fitt<strong>in</strong>gs across all zones) to 1.5 (for heat<strong>in</strong>gonlysystems or refrigerated cool<strong>in</strong>g-only systems <strong>in</strong> <strong>the</strong> coldest zone) (BCA2007).Commercial build<strong>in</strong>g energy codes <strong>in</strong> both Canada and <strong>the</strong> United States providem<strong>in</strong>imum pipe <strong>in</strong>sulation thickness and <strong>in</strong>sulation conductivity for hot watersystems (MNECB 1997 and ASHRAE 90.1-2007). The United States requirescirculat<strong>in</strong>g service hot water pip<strong>in</strong>g <strong>in</strong> a residential house to be <strong>in</strong>sulated to atleast R-2 (IECC 2006); for houses <strong>in</strong> Canada this value is R-1.5 (MNECH 1997).India requires pip<strong>in</strong>g for heat<strong>in</strong>g systems with a design operat<strong>in</strong>g temperature of60 o C or higher to have at least R-4 <strong>in</strong>sulation and R-2 for heat<strong>in</strong>g systems with adesign operat<strong>in</strong>g temperature of less than 60 o C (ECBC 2007). South Korea requires a m<strong>in</strong>imum <strong>in</strong>sulation thickness of between 25 mm and 50mm, depend<strong>in</strong>g on <strong>the</strong> pipe diameter for hot water pip<strong>in</strong>g. For cold water pipes,<strong>the</strong> range is between 25 mm and 40 mm with <strong>the</strong> goal of prevent<strong>in</strong>g condensation.For boilers and o<strong>the</strong>r heat generation systems, <strong>the</strong> <strong>in</strong>sulation thickness must bebetween 25 mm and 70 mm.Controls Canada requires service water heat<strong>in</strong>g systems with storage tanks <strong>in</strong> build<strong>in</strong>gsand houses to be equipped with automatic temperature controls and shutdown controls forany storage capacity over 100 liters (MNECB 1997 and MNECH 1997).Japan’s build<strong>in</strong>g energy codes promote <strong>the</strong> use of controls for water heat<strong>in</strong>g <strong>in</strong>commercial build<strong>in</strong>gs (CCREUB 1999).Service water heat<strong>in</strong>g system controls <strong>in</strong> <strong>the</strong> United States commercial build<strong>in</strong>gs <strong>in</strong>cludetemperature controls, temperature ma<strong>in</strong>tenance controls, outlet temperature controls, andcirculat<strong>in</strong>g pump controls (ASHRAE 90.1-2007). Residential build<strong>in</strong>g codes require that“automatic-circulat<strong>in</strong>g hot water system pumps or heat trace shall be arranged to beconveniently turned off automatically or manually when <strong>the</strong> hot water system is not <strong>in</strong>operation.”Pools Canada, India and <strong>the</strong> United States have similar provisions on swimm<strong>in</strong>g pools,which cover pool heaters, time switchers and pool covers.Solar water heat<strong>in</strong>g India’s code requires <strong>the</strong> use of solar water heat<strong>in</strong>g <strong>in</strong> residentialfacilities, hotels, and hospitals with a centralized system to provide at least one fifth of<strong>the</strong> design capacity heat<strong>in</strong>g (ECBC 2007). South Korea has provisions for solar waterheat<strong>in</strong>g <strong>in</strong> BDCES 2008. Solar water heat<strong>in</strong>g should have active demand control tomaximize daytime consumption and reduce heat storage capacity, and an <strong>in</strong>tegratedcontrol system <strong>in</strong>stalled between <strong>the</strong> solar heat<strong>in</strong>g and auxiliary heat source (BDCES2008). Codes <strong>in</strong> Australia, Japan and <strong>the</strong> United States also provide exceptions to o<strong>the</strong>rrequirements when solar water heat<strong>in</strong>g is used.Air pollution When <strong>in</strong>stall<strong>in</strong>g a combustion-type heat<strong>in</strong>g or hot water supply system <strong>in</strong>residential houses, <strong>the</strong> Japan residential standard encourages property owners to takemeasures to m<strong>in</strong>imize contam<strong>in</strong>ation of <strong>the</strong> <strong>in</strong>side air (CCREUH 1999).51


Water conservation Canada has mandatory provisions on water conservation forcommercial build<strong>in</strong>gs (MNECB 1997) and non-mandatory provisions for residentialhouses (MNECH 1997).3.6 Light<strong>in</strong>gKey F<strong>in</strong>d<strong>in</strong>gs Most APP countries cover light<strong>in</strong>g <strong>in</strong> <strong>the</strong>ir commercial build<strong>in</strong>g energy codes, butnone cover it <strong>in</strong> <strong>the</strong>ir residential build<strong>in</strong>g energy codes. Ch<strong>in</strong>a covers light<strong>in</strong>g <strong>in</strong> aseparate code. Light<strong>in</strong>g energy efficiency (or light<strong>in</strong>g power density) and light<strong>in</strong>g controls are<strong>the</strong> most commonly addressed issues. Australia has <strong>the</strong> most str<strong>in</strong>gent energy efficiency requirements for light<strong>in</strong>g <strong>in</strong>office build<strong>in</strong>gs.Light<strong>in</strong>g energy efficiency is part of <strong>the</strong> build<strong>in</strong>g energy codes for commercial build<strong>in</strong>gs<strong>in</strong> six APP countries. The light<strong>in</strong>g energy efficiency provisions cover light<strong>in</strong>g <strong>in</strong> <strong>in</strong>teriorand exterior spaces and light<strong>in</strong>g controls. Light<strong>in</strong>g power density (<strong>in</strong> watts per squaremeter) is employed as a key <strong>in</strong>dicator for <strong>the</strong> assessment of light<strong>in</strong>g energy efficiency.Australia, Canada, Ch<strong>in</strong>a, India and <strong>the</strong> United States provide maximum light<strong>in</strong>g powerdensity by build<strong>in</strong>g and/room function (Table 22), while Japan and South Korea do notexpress <strong>the</strong>ir light<strong>in</strong>g requirements as light<strong>in</strong>g power density.Table 22 Maximum Illum<strong>in</strong>ation Power Density <strong>in</strong> Offices (W/m 2 )Maximum Illum<strong>in</strong>ation Power Density <strong>in</strong> OfficesAUS 7 (artificially lit to an ambient level of less than 200 lx 45 ) and 10 (artificially lit to anambient level of 200 lx or more).CAN 18.3 (> 25000 m 2 ) to 20.4 (0 to 200 m 2 ).CHN 11 (current value 46 ) and 9 (target value 47 ) for general offices and meet<strong>in</strong>g rooms, and18 (high-class offices, design offices).IND 10.8 (build<strong>in</strong>g area method) and 11.8 (space function method).JAP Japan gives light<strong>in</strong>g efficiency <strong>in</strong> lumens per watt, not watts per m 2 . The commercialcode also has requirements that factor <strong>in</strong> <strong>the</strong> lit area and <strong>the</strong> distance between <strong>the</strong> lightsource and <strong>the</strong> work space. Efficient task light<strong>in</strong>g receives high scores <strong>in</strong> thisweighted system.KOR The BDCES has mandatory efficiency standards for each light<strong>in</strong>g fixture orlamp, but does not regulate <strong>the</strong> power density of <strong>the</strong> build<strong>in</strong>g as a whole. Thereare also requirements for controls, such as motion-sensors and <strong>the</strong> controls toallow occupants to turn off <strong>the</strong> lights <strong>in</strong> a specific part of a room. Extra po<strong>in</strong>tsare given to build<strong>in</strong>gs with a high share of LED lights.USA 10.8 (build<strong>in</strong>g area method) and 11.8 (space function method).45 lx is an <strong>in</strong>ternational standard unit for lum<strong>in</strong>ance.46 The current values refer to <strong>the</strong> values required or recommended by <strong>the</strong> light<strong>in</strong>g standard.47 The target values are <strong>the</strong> values to be <strong>in</strong> use <strong>in</strong> accordance with <strong>the</strong> decisions made by relatedadm<strong>in</strong>istrative agencies.52


Ch<strong>in</strong>a has a separate light<strong>in</strong>g standard, <strong>the</strong> Standard for Light<strong>in</strong>g Design <strong>in</strong> Build<strong>in</strong>gs(2004), which covers energy efficient design for light<strong>in</strong>g <strong>in</strong> residential, commercial and<strong>in</strong>dustrial build<strong>in</strong>gs. None of <strong>the</strong> residential build<strong>in</strong>g energy codes <strong>in</strong> APP countries coverlight<strong>in</strong>g. In <strong>the</strong> countries that have special codes for s<strong>in</strong>gle-family homes (Australia,Canada and <strong>the</strong> United States), this is probably because many light<strong>in</strong>g fixtures are oftenadded after <strong>the</strong> build<strong>in</strong>g is built.3.7 Electric PowerKey F<strong>in</strong>d<strong>in</strong>gs Australia, Canada, India, South Korea and <strong>the</strong> United States have <strong>in</strong>dividualsections on electric power. Ch<strong>in</strong>a and Japan do not provide specific sections andsubsections on this topic. Power sections/subsections cover such ma<strong>in</strong> issues as 1) efficiency of distribution,2) transformers, 3) motors, 4) power control, 4) meter<strong>in</strong>g and 5) documentation.Electric power refers to electric equipment and systems associated with build<strong>in</strong>gs andhouses. The build<strong>in</strong>g energy codes of Canada, India, and <strong>the</strong> United States have<strong>in</strong>dividual sections on this issue. Australia <strong>in</strong>tegrates power controls <strong>in</strong>to a section titledArtificial Light<strong>in</strong>g and Power. A section titled Electric Facility Design Criteria <strong>in</strong> SouthKorea’s build<strong>in</strong>g energy codes provide a subsection on electric power. Ch<strong>in</strong>a and Japando not provide a specific section or subsection <strong>in</strong> <strong>the</strong>ir build<strong>in</strong>g energy codes (Table 22).Table 23 Major Covered Issues <strong>in</strong> Electric Power of Build<strong>in</strong>g <strong>Energy</strong> Codes <strong>in</strong> APP CountriesAUS CAN IND KOR USAMNECB MNECHASHRAE IECCItems BCA 2007ECBC BDCES1997 199790.1-2007 20062007 2008C R C R C R<strong>Efficiency</strong> ofN.A.X X XdistributionN.A.N.A.Transformers X X XN.A.Motors X X XN.A.XPower Control X X X N.A. XMeter<strong>in</strong>gX X X X XDocumentation N.A.XXN.A.N.A.N.AO<strong>the</strong>rs N.A. X N.A.Note: C = Commercial build<strong>in</strong>gs, R = Residential build<strong>in</strong>gs, N.A = Not applicable.The ma<strong>in</strong> issues <strong>in</strong> a power section/subsection <strong>in</strong>clude 1) efficiency of distribution, 2)transformers, 3) motors, 4) power control, 4) meter<strong>in</strong>g, 5) documentation and 6) o<strong>the</strong>rs.<strong>Efficiency</strong> of Transmission and Distribution Systems India requires that <strong>the</strong> powerdistribution system losses not exceed 1% of <strong>the</strong> total power usage (ECBC 2008). SouthKorea mandates that <strong>the</strong> ma<strong>in</strong> l<strong>in</strong>e voltage drop must comply with <strong>the</strong> Korea ElectricAssociation’s <strong>in</strong>door wir<strong>in</strong>g regulations (BDCES 2008).Transformers Canada requires that transformers must comply with <strong>the</strong> relevant federalor local energy-efficiency standards, or <strong>in</strong> <strong>the</strong> absence of such standards, with good53


practice (MNECB 1997). India sets mandatory requirements on maximum allowablelosses for dry type and oil-filled distribution transformers, respectively. It also requiresmeasurement and report<strong>in</strong>g of transformer losses (ECBC 2008). South Korea mandates<strong>in</strong>stall<strong>in</strong>g energy-efficient transformers and transformer monitors (BDCES 2008).Motors Canada mandates that most motors <strong>in</strong> build<strong>in</strong>gs must comply with <strong>the</strong> standardsof <strong>the</strong> Canadian Standards Association. This provision does not apply to certa<strong>in</strong> motors,such as elevator motors (MNECB 1997). India provides mandatory requirements onenergy-efficient motors <strong>in</strong>clud<strong>in</strong>g motor efficiency, rat<strong>in</strong>gs, nameplates, rew<strong>in</strong>d<strong>in</strong>gpractices, and certificate (ECBC 2008). South Korea suggests <strong>the</strong> <strong>in</strong>stallation of energyefficient<strong>in</strong>duction motors and an energy-efficient system for <strong>the</strong> control of elevatormotors (BDCES 2008). Japan’s commercial code has requirements on motors used forlift<strong>in</strong>g (primarily elevators).Power Control Australia build<strong>in</strong>g energy codes provides prescriptive requirements onpower control <strong>in</strong> <strong>the</strong> <strong>in</strong>terior artificial light<strong>in</strong>g. In addition, time switches must control <strong>the</strong>power supply to boil<strong>in</strong>g or chilled water storage units (BCA 2007). Canada mandatesthat power controls must <strong>in</strong>clude switches or timers, with or without manual overrides.The controls must be <strong>in</strong>side <strong>the</strong> commercial build<strong>in</strong>g and residential houses (MNECB andMNECH 1997). South Korea recommends <strong>the</strong> configuration of controllers on banks oftransformers and demand controllers for peak times (BDCES 2008).Meter<strong>in</strong>g Dwell<strong>in</strong>g units and suites <strong>in</strong> Canada must have <strong>in</strong>dividual meter<strong>in</strong>g to ensurebill<strong>in</strong>g accuracy. Electrical distribution systems with a load-carry<strong>in</strong>g capacity over 250kVA must be able to monitor <strong>the</strong> energy consumption of each tenant or service with aconnected load of 100 kVA or more. Each house must have an <strong>in</strong>dividual meter.Monitor<strong>in</strong>g is required for commercial build<strong>in</strong>gs but not for residential houses (MNECB1997 and MNECH 1997).In India, electric meter<strong>in</strong>g should be <strong>in</strong>stalled for record<strong>in</strong>g energy, demand, total powerfactor, and/or voltage dependent on service capacity (ECBC 2008). South Korea and <strong>the</strong>United States recommend <strong>the</strong> <strong>in</strong>stallation of <strong>in</strong>dividual electricity consumption meters <strong>in</strong>each dwell<strong>in</strong>g unit (BDCES 2008 and IECC 2006) and each rental space <strong>in</strong> commercialbuild<strong>in</strong>gs (BDCES 2008).Documentation Canada specifies <strong>the</strong> documentation requirements for compliance ofcommercial build<strong>in</strong>gs (MNECB 1997). India requires ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g a record of designcalculations for power distribution system losses (ECBC 2008). The United Statesrequires draw<strong>in</strong>gs (such as a diagram of <strong>the</strong> build<strong>in</strong>g electrical distribution system andfloor plans <strong>in</strong>dicat<strong>in</strong>g location and area served for all distribution) and manuals (such asequipment rat<strong>in</strong>g and operation manuals) to be submitted to <strong>the</strong> build<strong>in</strong>g owner(ASHRAE 90.1-2007).3.8 Trade-off and Build<strong>in</strong>g Performance ApproachKey F<strong>in</strong>d<strong>in</strong>gs Most APP countries offer two alternatives to <strong>the</strong> prescriptive requirements: tradeoffsfor <strong>the</strong> build<strong>in</strong>g envelope requirements and a build<strong>in</strong>g performance approachthat encompasses a range of build<strong>in</strong>g energy requirements. In most APP countries,54


<strong>the</strong>re are also certa<strong>in</strong> mandatory requirements that must be met regardless of anyalternative options. The approach to build<strong>in</strong>g performance varies between APPcountries. The United States employs an energy/cost/budget method, which is anenergy cost-based type of build<strong>in</strong>g performance that differs from o<strong>the</strong>r energyconsumption-based build<strong>in</strong>g performance approaches. Japan and South Korea employ a scor<strong>in</strong>g or po<strong>in</strong>t approach, which fallssomewhere between a trade-off and performance approach. In Japan’scommercial code, each section of <strong>the</strong> code is scored separately, mak<strong>in</strong>g it moreak<strong>in</strong> to <strong>the</strong> trade-off alternatives <strong>in</strong> countries with prescriptive requirements.Japan’s commercial and residential codes both also have performancerequirements based on energy consumption per square meter. In South Korea, all<strong>the</strong> requirements <strong>in</strong> <strong>the</strong> build<strong>in</strong>g energy code are scored toge<strong>the</strong>r, mak<strong>in</strong>g it morelike a performance approach. South Korea also has prescriptive <strong>in</strong>sulationrequirements <strong>in</strong> its general build<strong>in</strong>g code. Ch<strong>in</strong>a has adopted a hybrid approach: first, <strong>the</strong> build<strong>in</strong>g performance approach isused to determ<strong>in</strong>e <strong>the</strong> difference <strong>in</strong> energy consumption between a designed and areference build<strong>in</strong>g, <strong>the</strong>n <strong>the</strong> difference is adjusted us<strong>in</strong>g <strong>the</strong> trade-off approach.Australia lists two types of build<strong>in</strong>g performance approaches for build<strong>in</strong>gs. For dwell<strong>in</strong>gs,<strong>the</strong> <strong>the</strong>rmal calculation method is employed to comply with <strong>the</strong> Australian Build<strong>in</strong>gCodes Board’s Protocol for House <strong>Energy</strong> Rat<strong>in</strong>g Software. Each dwell<strong>in</strong>g unit has anenergy rat<strong>in</strong>g of not less than 3 stars. For commercial build<strong>in</strong>gs, <strong>the</strong> codes set maximumregional annual energy allowances (<strong>in</strong> megajoules per square meter) by fuel and build<strong>in</strong>gtypes, with a separate section devoted to <strong>the</strong> methodology to calculate annual energyconsumption. There are also provisions for trade-offs and a build<strong>in</strong>g performanceapproach for houses.Ch<strong>in</strong>a’s commercial build<strong>in</strong>g energy codes comb<strong>in</strong>e <strong>the</strong> performance approach and tradeoffapproach. First, annual energy consumption is calculated and compared for heat<strong>in</strong>gand cool<strong>in</strong>g of a reference and designed build<strong>in</strong>g. Second, <strong>the</strong> trade-off approach is usedonly if <strong>the</strong> value of a designed build<strong>in</strong>g is higher than <strong>the</strong> reference case. A similarcomb<strong>in</strong>ation approach also applies for residential build<strong>in</strong>g codes.Japan’s and South Korea’s build<strong>in</strong>g energy codes for commercial build<strong>in</strong>gs adopt ascor<strong>in</strong>g approach: <strong>the</strong> desired measures that lead to higher build<strong>in</strong>g energy efficiency arescored with higher po<strong>in</strong>ts. Differ<strong>in</strong>g from its commercial build<strong>in</strong>g energy codes, Japan’sresidential build<strong>in</strong>g energy codes have prescriptive measures <strong>in</strong>stead of scored ones,though with both <strong>the</strong> residential and commercial codes <strong>in</strong> Japan, <strong>the</strong>re are performancebasedmetrics as well.South Korea has a recommended build<strong>in</strong>g energy efficiency rat<strong>in</strong>g system based on <strong>the</strong>performance approach. However, <strong>in</strong> some areas such as new towns, municipalgovernments may require that <strong>the</strong>ir new build<strong>in</strong>gs obta<strong>in</strong> a higher level label for energyefficiency than specified <strong>in</strong> <strong>the</strong> build<strong>in</strong>g code. In addition, South Korea is prepar<strong>in</strong>g anew performance-based code which sets requirements for maximum annual energy usage.Accord<strong>in</strong>gly, after 2010, build<strong>in</strong>gs over 10,000 square meters will be required to submitannual energy consumption and a CO 2 emission report to <strong>the</strong> government. Thesedocuments must be calculated by <strong>the</strong> performance approach.55


Canada and India adopt compliance paths similar to that of <strong>the</strong> United States <strong>in</strong>clud<strong>in</strong>goptions of simpler trade-offs and build<strong>in</strong>g performance standards. Each major section(such as build<strong>in</strong>g envelope, HVAC, hot water service, light<strong>in</strong>g, and electric power)conta<strong>in</strong>s mandatory provisions followed by ei<strong>the</strong>r prescriptive provisions or a build<strong>in</strong>gperformance approach, which often leads to a separate section. A trade-off approach is<strong>in</strong>troduced <strong>in</strong> <strong>the</strong> section on build<strong>in</strong>g envelope. Some differences <strong>in</strong> build<strong>in</strong>g energycodes of <strong>the</strong>se three countries <strong>in</strong>clude <strong>the</strong> follow<strong>in</strong>g:Canada. The section on build<strong>in</strong>g energy performance compliance lists <strong>the</strong>conditions and limitations of apply<strong>in</strong>g <strong>the</strong> build<strong>in</strong>g performance approach andrefers to two o<strong>the</strong>r complementary documents for details of calculationprocedures. In <strong>the</strong> section on build<strong>in</strong>g envelope, two trade-off approaches–simpletrade-offs and computer-assisted trade-offs–are alternative options to prescriptiveprovisions. India. An ECBC appendix titled Whole Build<strong>in</strong>g Performance Method providesdetails on model<strong>in</strong>g requirements for calculat<strong>in</strong>g a reference and designedbuild<strong>in</strong>g. The build<strong>in</strong>g trade-off calculation method for <strong>the</strong> envelope performancefactor is <strong>in</strong>troduced <strong>in</strong> ano<strong>the</strong>r appendix. The build<strong>in</strong>g performance approach <strong>in</strong> <strong>the</strong> United States’ ASHRAE 90.1-2007uses <strong>the</strong> energy/cost/budget method, which compares <strong>the</strong> annual energy costs of areference build<strong>in</strong>g and a design build<strong>in</strong>g. The cost-oriented build<strong>in</strong>g performanceapproach differs from o<strong>the</strong>r build<strong>in</strong>g performance approaches that often use<strong>in</strong>dicators of energy consumption for comparison. In <strong>the</strong> section on build<strong>in</strong>genvelope, a trade-off approach is <strong>in</strong>troduced and details on <strong>the</strong> calculation of <strong>the</strong>envelope performance factor appear <strong>in</strong> an appendix. In <strong>the</strong> HVAC section, asimplified approach 48 is an alternative to <strong>the</strong> mandatory provisions, prescriptiveprovisions, and <strong>the</strong> energy/cost/budget method. In <strong>the</strong> light<strong>in</strong>g section, <strong>the</strong>build<strong>in</strong>g area method and space-by-space method are two trade-off approachesoffered. The United States’ residential build<strong>in</strong>g energy code, IECC 2006, offerstwo alternative compliance approaches (<strong>in</strong> addition to <strong>the</strong> prescriptive path): <strong>the</strong>trade-off approach for <strong>the</strong> build<strong>in</strong>g envelope and a simulated performanceapproach for <strong>the</strong> whole house.3.9 RenovationsSome countries require any renovation or addition to meet <strong>the</strong> code, while o<strong>the</strong>rsestablish a threshold. If renovations are required to meet <strong>the</strong> code, <strong>the</strong>y must typicallymeet all relevant aspects of <strong>the</strong> code. For example, Canada’s codes specify thatrenovations of at least 10 square meters <strong>in</strong> build<strong>in</strong>gs and homes must meet <strong>the</strong> build<strong>in</strong>genergy code requirements. In <strong>the</strong> United States, ASHRAE 90.1-2007 considers anyaddition beyond <strong>the</strong> exist<strong>in</strong>g build<strong>in</strong>g envelope or alteration to an exist<strong>in</strong>g, regulatedbuild<strong>in</strong>g to fall under <strong>the</strong> code. IECC 2006 generally requires any additions, alterations,renovations or repairs to meet <strong>the</strong> code.48 The simplified approach is an optional path for build<strong>in</strong>gs of less than two stories (2323 m 2 or 25,000 ft 2 )and accord<strong>in</strong>g to where <strong>the</strong> HVAC system complies with certa<strong>in</strong> provisions listed <strong>in</strong> <strong>the</strong> HVAC section.56


In countries that only require that large build<strong>in</strong>gs meet <strong>the</strong> code, renovations can play an<strong>in</strong>terest<strong>in</strong>g role because additions can put build<strong>in</strong>gs over <strong>the</strong> compliance threshold.India’s code requires that additions, toge<strong>the</strong>r with <strong>the</strong> entire build<strong>in</strong>g, must comply if <strong>the</strong>total size of <strong>the</strong> new build<strong>in</strong>g exceeds <strong>the</strong> m<strong>in</strong>imum compliance threshold. India’s codealso requires that certa<strong>in</strong> types of alterations must meet <strong>the</strong> code if <strong>the</strong> exist<strong>in</strong>g build<strong>in</strong>gfalls with<strong>in</strong> <strong>the</strong> regulated size limits (<strong>the</strong>se <strong>in</strong>clude certa<strong>in</strong> alterations to <strong>the</strong> build<strong>in</strong>genvelope, HVAC systems and o<strong>the</strong>r systems related to energy). Ch<strong>in</strong>a is consider<strong>in</strong>g aseparate code that would regulate renovation of build<strong>in</strong>gs <strong>in</strong> <strong>the</strong> coldest parts of thatcountry.3.10 Operations and Ma<strong>in</strong>tenanceOnly a few APP countries <strong>in</strong>clude requirements with<strong>in</strong> <strong>the</strong> build<strong>in</strong>g energy code on how abuild<strong>in</strong>g is operated once it is built. Japan’s residential standard <strong>in</strong>cludes <strong>in</strong>formation onbuild<strong>in</strong>g operations and ma<strong>in</strong>tenance <strong>in</strong> a section called “How to Live,” which coversissues such as prevent<strong>in</strong>g <strong>in</strong>complete combustion <strong>in</strong> heat<strong>in</strong>g systems, prevent<strong>in</strong>gcondensation and ensur<strong>in</strong>g proper ventilation. Likewise, owners of houses and build<strong>in</strong>gsmust provide local authorities with reports on ma<strong>in</strong>tenance every three years. Australia’scode has a section on ma<strong>in</strong>tenance whose objective is “to reduce greenhouse gasemissions by efficiently us<strong>in</strong>g energy throughout <strong>the</strong> life of <strong>the</strong> build<strong>in</strong>g”. This appliesonly to non-residential build<strong>in</strong>gs and spaces. This section requires that <strong>the</strong> build<strong>in</strong>g’sservices be able to use energy efficiently and cont<strong>in</strong>ually meet <strong>the</strong> required standard. Itapplies to systems such as adjustable or motorized shad<strong>in</strong>g devices, time switches andmotion detectors, room temperature <strong>the</strong>rmostats, heat transfer equipment, and o<strong>the</strong>rs.O<strong>the</strong>r countries have programs to promote energy efficiency <strong>in</strong> exist<strong>in</strong>g build<strong>in</strong>gs, but<strong>the</strong>y do not <strong>in</strong>clude requirements or o<strong>the</strong>r details <strong>in</strong> <strong>the</strong>ir build<strong>in</strong>g energy codes. This isprobably because, <strong>in</strong> most cases, <strong>the</strong> po<strong>in</strong>t of control for <strong>the</strong> build<strong>in</strong>g energy codes is with<strong>the</strong> build<strong>in</strong>g permitt<strong>in</strong>g process, and after that, enforcement is difficult.4 Enforcement and Compliance4.1 Enforcement FrameworkKey F<strong>in</strong>d<strong>in</strong>gs Local governments <strong>in</strong> all APP countries have a major role <strong>in</strong> verify<strong>in</strong>g codecompliance for all or part of a build<strong>in</strong>g’s design. However, some countries (e.g.,Ch<strong>in</strong>a, Japan and <strong>the</strong> United States) may br<strong>in</strong>g <strong>in</strong> third parties to oversee <strong>the</strong>design stage. This is common <strong>in</strong> Ch<strong>in</strong>a but rare <strong>in</strong> <strong>the</strong> o<strong>the</strong>r countries. In o<strong>the</strong>rcountries, such as South Korea, <strong>the</strong> national government may also take part <strong>in</strong>code enforcement dur<strong>in</strong>g this stage (through <strong>the</strong> Korean <strong>Energy</strong> ManagementCorporation). If <strong>the</strong>re are third parties, <strong>the</strong>y are usually certified and appo<strong>in</strong>ted bylocal governments. Build<strong>in</strong>g <strong>in</strong>spections are performed by local governments <strong>in</strong> Australia, Canada,South Korea and <strong>the</strong> United States. As <strong>in</strong> <strong>the</strong> design stage, third parties may alsobe <strong>in</strong>volved <strong>in</strong> <strong>in</strong>spections <strong>in</strong> <strong>the</strong> United States, although this is rare.57


Japan only supervises <strong>the</strong> build<strong>in</strong>g design, and does not <strong>in</strong>spect build<strong>in</strong>gs forenergy code issues. Ch<strong>in</strong>a relies heavily on third parties, both <strong>in</strong> <strong>the</strong> design review and <strong>in</strong> <strong>in</strong>spections. India does not enforce its voluntary code. S<strong>in</strong>ce state and local governmentswould need to adopt <strong>the</strong> code for it to become mandatory, <strong>the</strong>se governmentswould likely have a large role <strong>in</strong> enforcement, as <strong>the</strong>y do with o<strong>the</strong>r build<strong>in</strong>g codeissues. Several APP countries provide penalties and <strong>in</strong>centives to encourage codecompliance. Common consequences for non-compliance <strong>in</strong>clude prohibit<strong>in</strong>g aproperty owner from occupy<strong>in</strong>g a build<strong>in</strong>g, publish<strong>in</strong>g <strong>the</strong> names of noncompliantproperty owners and issu<strong>in</strong>g f<strong>in</strong>es. Rewards for compliance commonly<strong>in</strong>volve one or more of <strong>the</strong> follow<strong>in</strong>g: monetary awards, relaxation of zon<strong>in</strong>grequirements for a build<strong>in</strong>g, low <strong>in</strong>terest rates from banks and o<strong>the</strong>r lend<strong>in</strong>g<strong>in</strong>stitutions, and tax benefits.Strong build<strong>in</strong>g codes are an effective and low-cost approach to improve energyefficiency. However, without str<strong>in</strong>gent enforcement by officials and compliance from <strong>the</strong>construction <strong>in</strong>dustry, build<strong>in</strong>g codes do not deliver <strong>the</strong> promised energy sav<strong>in</strong>gs.Enforcement of build<strong>in</strong>g codes encompasses several stages of build<strong>in</strong>g construction andis carried out by different bodies of government or <strong>the</strong> private sector. The first element ofenforcement or po<strong>in</strong>t of control is at <strong>the</strong> design stage. All APP countries except Indiahave local governments oversee this stage, albeit to different degrees (India’s code isvoluntary, so <strong>the</strong>re is no enforcement framework currently). In most cases, this meansthat local governments oversee <strong>the</strong> process and conduct <strong>the</strong> actual reviews. This is true <strong>in</strong>Australia, Canada, South Korea, Japan and <strong>the</strong> United States. South Korea, Japan and <strong>the</strong>United States also <strong>in</strong> some cases allow third parties to verify designs, although <strong>in</strong> mostsuch cases, local governments review <strong>the</strong> verification of <strong>the</strong> designs. For example, <strong>in</strong>South Korea, <strong>the</strong> Korea <strong>Energy</strong> Management Corporation may be asked to verify designsfor local governments. In Japan, local governments review and approve all build<strong>in</strong>gdesigns. However, third parties, referred to as “designated confirmation bodies,” firstvalidate build<strong>in</strong>g designs (Cab<strong>in</strong>et Office of Japan 2006).Enforcement is just as crucial dur<strong>in</strong>g build<strong>in</strong>g construction and before a build<strong>in</strong>g iscertified for occupancy. Local governments <strong>in</strong> Australia, Canada, South Korea and <strong>the</strong>United States perform build<strong>in</strong>g <strong>in</strong>spections. With small build<strong>in</strong>gs, <strong>in</strong>spections willtypically take place twice: once dur<strong>in</strong>g construction (before <strong>the</strong> <strong>in</strong>terior walls are sealed)and once before <strong>the</strong> build<strong>in</strong>g is put <strong>in</strong>to operation. Large build<strong>in</strong>gs, on <strong>the</strong> o<strong>the</strong>r hand,may require a series of <strong>in</strong>spections as construction takes place at different paces <strong>in</strong>different stories of <strong>the</strong> build<strong>in</strong>g. In Japan, <strong>the</strong>re are no <strong>in</strong>spections for build<strong>in</strong>g energycode requirements. Ch<strong>in</strong>a relies primarily on third party entities for <strong>in</strong>spections and <strong>the</strong>reis typically one <strong>in</strong>spection. India does not yet enforce its code. In <strong>the</strong> United States, Ch<strong>in</strong>aand o<strong>the</strong>r countries <strong>the</strong>re is a grow<strong>in</strong>g effort to verify and document compliance rates.For example, <strong>in</strong> <strong>the</strong> United States, recent legislation sets a goal of 90% enforcement of<strong>the</strong> build<strong>in</strong>g energy codes, and <strong>the</strong> U.S. Department of <strong>Energy</strong> is develop<strong>in</strong>g detailedmethodologies for track<strong>in</strong>g compliance rates.58


Ch<strong>in</strong>ese local governments also designate certified <strong>in</strong>dependent organizations to verifydesign compliance to codes. These organizations are appo<strong>in</strong>ted by city governmentsthrough <strong>the</strong>ir respective construction adm<strong>in</strong>istration departments. There are no centralstandards for certification. Local or central government officials may randomly check <strong>the</strong>results.Appendix A summarizes <strong>the</strong> entities that carry out <strong>in</strong>spections and what <strong>in</strong>centives forcompliance each country has established.Box: Spotlight on Use of Third PartiesThird parties are an important option for quickly expand<strong>in</strong>g enforcement capabilities <strong>in</strong> countriesthat have until recently, not consistently reviewed designs or <strong>in</strong>spected build<strong>in</strong>gs for compliancewith <strong>the</strong>ir codes. Several APP countries have experience with third party verification at ei<strong>the</strong>r <strong>the</strong>design review or <strong>in</strong>spection stage. Hence, it seems useful to highlight this experience andpotentially useful lessons.In Japan, designated confirmation bodies, such as <strong>the</strong> Build<strong>in</strong>g Center of Japan, verify build<strong>in</strong>gdesigns before local governments approve <strong>the</strong> designs. These bodies are officially approved by agovernment agency (<strong>the</strong> Build<strong>in</strong>g Center of Japan was approved by <strong>the</strong> M<strong>in</strong>istry of Construction<strong>in</strong> 1965). The designated confirmation bodies of Japan abide by <strong>the</strong> regulations set out <strong>in</strong> <strong>the</strong>Build<strong>in</strong>g Standard Law of Japan.In South Korea, local government build<strong>in</strong>g officials enforce <strong>the</strong> codes for new build<strong>in</strong>gs as part of<strong>the</strong> build<strong>in</strong>g permitt<strong>in</strong>g process. The property owner of <strong>the</strong> proposed build<strong>in</strong>g is required tocomplete an energy-sav<strong>in</strong>gs worksheet signed by a licensed architect, mechanical eng<strong>in</strong>eer andelectrical eng<strong>in</strong>eer. The Korean <strong>Energy</strong> Management Corporation may also take part <strong>in</strong> review<strong>in</strong>g<strong>the</strong> worksheets, but ultimately <strong>the</strong> decision to approve <strong>the</strong> design is made by local governmentofficials.In <strong>the</strong> United States, local jurisdictions or states enforce <strong>the</strong> build<strong>in</strong>g energy codes and <strong>the</strong>secodes are adopted at <strong>the</strong> local level. The same is true <strong>in</strong> Canada, where enforcement falls under<strong>the</strong> authority of prov<strong>in</strong>cial and territorial governments. Although <strong>the</strong> United States state and localjurisdictions typically verify build<strong>in</strong>g designs and <strong>in</strong>spect build<strong>in</strong>gs, <strong>in</strong> a few jurisdictions, stateand local governments may also allow third parties to verify build<strong>in</strong>g designs. This can takedifferent forms. In Wiscons<strong>in</strong>, for example, certified build<strong>in</strong>g designers must sign <strong>the</strong> occupancypermit, <strong>in</strong>dicat<strong>in</strong>g that <strong>the</strong> construction matches <strong>the</strong> design. Designers who do not properly verifyconstruction <strong>in</strong> this jurisdiction can lose <strong>the</strong>ir licenses, which provides a strong <strong>in</strong>centive. InFairfax County, Virg<strong>in</strong>ia, developers can hire certified third parties to speed <strong>the</strong> <strong>in</strong>spectionprocess, but <strong>the</strong> third party cannot have a f<strong>in</strong>ancial <strong>in</strong>terest <strong>in</strong> <strong>the</strong> project.Third-party reviewers not only lessen <strong>the</strong> workload but also tend to be more experienced <strong>in</strong>solv<strong>in</strong>g <strong>the</strong> complexities and subtleties of codes and may have access to o<strong>the</strong>r sources andcontacts (Bartlett et al., 2003). The disadvantage of third parties is that <strong>the</strong>y may have a conflictof <strong>in</strong>terest and as such, <strong>the</strong>y may not have an <strong>in</strong>centive to highlight design errors. It has beenobserved <strong>in</strong> <strong>the</strong> United States that enforcement is more successful when local and stategovernments work toge<strong>the</strong>r to enforce codes (Bartlett et al., 2003).59


4.2 Test<strong>in</strong>g and Rat<strong>in</strong>gKey F<strong>in</strong>d<strong>in</strong>gs <strong>Energy</strong> rat<strong>in</strong>gs given to materials and equipment help builders, owners and codeenforcement officials determ<strong>in</strong>e if us<strong>in</strong>g <strong>the</strong>m would allow a build<strong>in</strong>g to meet <strong>the</strong>build<strong>in</strong>g energy code. However, <strong>the</strong> criteria used to rate materials and equipment(i.e., <strong>the</strong> test standards identified <strong>in</strong> most codes) often differ from one country to<strong>the</strong> next. This may have implications on imported build<strong>in</strong>g materials. APP countries are lead<strong>in</strong>g a project that aims to harmonize test protocols. India’s experience demonstrates how critical it is for countries to tailor <strong>the</strong>ir testprotocols to local conditions (e.g., climate and available resources) to ensure <strong>the</strong>targeted energy efficiency level is achieved.Test<strong>in</strong>g and rat<strong>in</strong>g compliance of build<strong>in</strong>gs and build<strong>in</strong>g materials to code is essential toensure energy efficiency. The energy rat<strong>in</strong>gs given to materials and equipment helpbuilders, owners and code enforcement officials determ<strong>in</strong>e if us<strong>in</strong>g <strong>the</strong>m would allow abuild<strong>in</strong>g to meet <strong>the</strong> build<strong>in</strong>g energy code. For example, if <strong>the</strong> code specifies a U-factorfor a wall, know<strong>in</strong>g <strong>the</strong> R-value of <strong>the</strong> <strong>in</strong>sulation that goes <strong>in</strong>to <strong>the</strong> wall is critical toestablish<strong>in</strong>g <strong>the</strong> wall’s U-factor. Build<strong>in</strong>g energy codes typically reference test standardsthat must be used when establish<strong>in</strong>g <strong>the</strong> energy rat<strong>in</strong>g of a product. Two examples canhighlight <strong>the</strong> importance of test standards:1. Air conditioners <strong>in</strong> India tend to operate at about 30% below stated efficiencylevels of <strong>the</strong> equipment because of <strong>the</strong> extremely hot climate. Specifications for<strong>the</strong> design of air conditioners are based on standards that meet <strong>the</strong> averageseasonal wea<strong>the</strong>r conditions of <strong>the</strong> United States. India currently does not have itsown test standards for air conditioners. A test protocol designed for Indianconditions would likely encourage manufacturers to design and produce airconditioners that operate more efficiently <strong>in</strong> very hot climates.2. Identify<strong>in</strong>g differences <strong>in</strong> test<strong>in</strong>g protocols becomes particularly importantrelevant to import<strong>in</strong>g build<strong>in</strong>g materials. For example, upon test<strong>in</strong>g w<strong>in</strong>dowsimported from a foreign country, some United States cities have found that <strong>the</strong> R-values may vary by as much as 10% from those <strong>in</strong>dicated by <strong>the</strong> rat<strong>in</strong>g. It is<strong>the</strong>refore beneficial to take <strong>in</strong>to account differences <strong>in</strong> test standards applied <strong>in</strong>o<strong>the</strong>r countries. The North American <strong>Energy</strong> Work<strong>in</strong>g Group, for example, iswork<strong>in</strong>g to verify that test protocols for room air conditioners <strong>in</strong> <strong>the</strong> United States,Canada and Mexico are identical or nearly identical (NAEWG, no date).Appendix B conta<strong>in</strong>s examples of <strong>the</strong> test standards referenced <strong>in</strong> each APP country’sbuild<strong>in</strong>g code and identifies some of <strong>the</strong> major test<strong>in</strong>g agencies or certificationassociations <strong>in</strong>volved <strong>in</strong> test<strong>in</strong>g equipment and materials for energy efficiency.Several APP countries reference International Organization for Standardization (ISO)standards <strong>in</strong> <strong>the</strong>ir codes (e.g., Canada and Japan). Given <strong>the</strong> differences that existbetween test standards of each country, ISO has attempted to achieve harmonization oftest procedures. However, for every ISO standard <strong>the</strong>re may be several test protocols.60


In response to this need, APP is lead<strong>in</strong>g a project that aims to reach harmony between testprotocols <strong>in</strong>clud<strong>in</strong>g harmoniz<strong>in</strong>g test procedures for electric motors (BATF-06-01), 49 testprocedures for HVAC (BATF-06-04) and w<strong>in</strong>dow rat<strong>in</strong>g procedures (BATF-06-25).Project details are available to <strong>the</strong> public on <strong>the</strong> APP website:http://www.asiapacificpartnership.org/english/project_roster.aspx.Table 24 identifies which test<strong>in</strong>g protocols are referenced <strong>in</strong> <strong>the</strong> code(s) of each APPcountry for some of <strong>the</strong> major build<strong>in</strong>g components under review (<strong>in</strong>sulation, HVAC,w<strong>in</strong>dows and light<strong>in</strong>g).Table 24 Referenced Test Standards <strong>in</strong> CodesInsulation HVAC W<strong>in</strong>dows Light<strong>in</strong>gAUS Yes Yes No NoCANCHNINDNoYes(presentsprotocol)NoYesYes (presentsprotocol)YesNo (but references anAmerican Society forTest<strong>in</strong>g and Materials teststandard for w<strong>in</strong>dows)Yes(presents protocol)No(but references an AmericanSociety for Test<strong>in</strong>g andMaterials test standard)No (exceptfluorescent ballasts)JAP Yes No Yes NoKORYesNo(but mentioned <strong>in</strong> <strong>the</strong>product standard)YesYesUSAYes Yes Yes4.3 Compliance Software and ToolsYesNoNo (exceptfluorescent ballasts)Key F<strong>in</strong>d<strong>in</strong>gs There are three major policy approaches to compliance software among APPcountries: 1) some countries (e.g., Australia) develop detailed protocols orrequirements for compliance software that allow many software developers toissue products while ensur<strong>in</strong>g consistent results, 2) some governments (e.g.,Canada, Japan and <strong>the</strong> United States) pay for <strong>the</strong> development of compliancesoftware that is <strong>the</strong>n free-of-charge, and 3) o<strong>the</strong>r countries have a less formalpolicy on code compliance software because <strong>the</strong>ir codes are relatively simple(e.g., South Korea) or <strong>the</strong>y rely on private companies to develop software (e.g.,Ch<strong>in</strong>a). Some countries adopt several approaches, for example, develop<strong>in</strong>gdetailed protocols, but also fund<strong>in</strong>g software development and offer<strong>in</strong>g somesoftware for free.49 BATF is short for <strong>the</strong> Build<strong>in</strong>gs and Appliances Task Force.61


O<strong>the</strong>r commonly used tools among APP countries are checklists and guides ormanuals, which are often available onl<strong>in</strong>e.As shown <strong>in</strong> Tables 25 and 26, several APP countries promote software and o<strong>the</strong>r toolssuch as manuals to fur<strong>the</strong>r assist <strong>the</strong> build<strong>in</strong>g <strong>in</strong>dustry <strong>in</strong> test<strong>in</strong>g for code compliance. Inbroad terms, <strong>the</strong>re are three policy approaches to compliance software. The first is todevelop detailed protocols or requirements for compliance software that allow manysoftware developers to issue products while ensur<strong>in</strong>g consistent results. Such is <strong>the</strong> casewith Australia, where <strong>the</strong> Australian Build<strong>in</strong>g Code Board publishes detailed protocolsfor software development entitled, “House <strong>Energy</strong> Rat<strong>in</strong>g Software” and “Build<strong>in</strong>g<strong>Energy</strong> Rat<strong>in</strong>g Software,” which software developers use to self-verify whe<strong>the</strong>r <strong>the</strong>irsoftware meets <strong>the</strong> correspond<strong>in</strong>g protocol’s verification procedures. Thus, despite <strong>the</strong>wide variety of build<strong>in</strong>g software available <strong>in</strong> Australia compared to o<strong>the</strong>r countries,computer programs such as Accurate (government produced) or BERSPro (privatelydeveloped) all meet <strong>the</strong> protocol guidel<strong>in</strong>es. Similarly <strong>in</strong> <strong>the</strong> United States, <strong>the</strong> Home<strong>Energy</strong> Rat<strong>in</strong>g System program uses an energy efficiency software package that is basedon specifications outl<strong>in</strong>ed <strong>in</strong> IECC 2006. 50Governments <strong>in</strong> some countries pay for <strong>the</strong> development of software that is <strong>the</strong>n free ofcharge, which is <strong>the</strong> second approach. In Japan, for example, <strong>the</strong> M<strong>in</strong>istry of Land,Infrastructure, Transport and Tourism has sponsored <strong>the</strong> development of CASBEE—software updated <strong>in</strong> 2007 that promotes implementation of <strong>the</strong> build<strong>in</strong>g code byevaluat<strong>in</strong>g <strong>the</strong> environmental performance of build<strong>in</strong>gs, <strong>in</strong>clud<strong>in</strong>g energy efficiency. 51Although voluntary, some local authorities have adopted and tailored <strong>the</strong> software tolocal conditions (e.g., accord<strong>in</strong>g to <strong>the</strong>ir climate and prioritized policies). In Osaka Cityand Nagoya City, for example, build<strong>in</strong>gs that earn a high rank<strong>in</strong>g us<strong>in</strong>g CASBEE areeligible for subsidies from <strong>the</strong>ir respective city governments. The software can also helpdiscourage noncompliance. In Kawasaki City, for example, CASBEE rank<strong>in</strong>gs forresidential build<strong>in</strong>gs must be displayed on sales advertisements.Canada and <strong>the</strong> United States also offer free software, which is yet ano<strong>the</strong>r <strong>in</strong>centive toencourage code compliance. This is also a way to promote a uniform methodology ofcode compliance verification nationwide. This is especially important <strong>in</strong> <strong>the</strong> threecountries where use of <strong>the</strong> software may be voluntary (Japan) or where build<strong>in</strong>g codesmay not be consistent <strong>in</strong> every prov<strong>in</strong>ce or state (Canada and <strong>the</strong> United States).The third approach is to have a less formal policy on code compliance software. This canmean that ei<strong>the</strong>r software is not heavily used for compliance or that private companiesdevelop software. However, without detailed protocols and rules for <strong>the</strong> calculations <strong>in</strong><strong>the</strong> software, <strong>the</strong> software may vary significantly from developer to developer andproduce <strong>in</strong>consistent results.50 A home energy rat<strong>in</strong>g consists of an analysis of residential construction plans and onsite <strong>in</strong>spections. Formore <strong>in</strong>formation, please see http://www.energystar.gov/<strong>in</strong>dex.cfm?c=bldrs_lenders_raters.nh_HERS.51 CASBEE evaluates a build<strong>in</strong>g on <strong>the</strong> follow<strong>in</strong>g aspects: energy efficiency, resource efficiency, localenvironment, and <strong>in</strong>door environment. For more <strong>in</strong>formation, please seehttp://www.ibec.or.jp/CASBEE/english/methodE.htm.62


Table 25 Compliance SoftwareSoftware Methodology Described <strong>in</strong> CodesAUSYesBCA 2007CANMNECBCANMNECHCHNINDJAPKORUSAIECC 2006USAASHRAE 90.1-2007Yes(refers to ano<strong>the</strong>r document 52 )Yes(refers to ano<strong>the</strong>r document 53 )NoNoNoNoSee Appendix C for a more detailed review of <strong>the</strong> different types of software employed <strong>in</strong>each APP country.YesYesTable 26 Compliance ToolsExist<strong>in</strong>g ToolsAustralian Build<strong>in</strong>gCodes Board website:www.abcb.gov.auAUSBCA 2007DescriptionConta<strong>in</strong>s issues of <strong>the</strong> Australian Build<strong>in</strong>g RegulationBullet<strong>in</strong> s<strong>in</strong>ce 1997 (biannual magaz<strong>in</strong>e); BCAamendments and releases; certificates of conformity;energy standards and documents; build<strong>in</strong>g surveyorand certifier accreditation documents; and energyeducation documents.CAN 54MNECB1997Guide: “PerformanceCompliance forBuild<strong>in</strong>gs:Specifications forCalculation Proceduresfor Demonstrat<strong>in</strong>gComplianceto <strong>the</strong> Model National<strong>Energy</strong> Code forBuild<strong>in</strong>gsUs<strong>in</strong>g Whole Build<strong>in</strong>gPerformance” (May1999)Offers build<strong>in</strong>g codes and construction books for sale.Supplement to Part 8 of <strong>the</strong> MNECB 1997Available free of charge on <strong>the</strong> Canadian CodesCentre of <strong>the</strong> Canadian Commission on Build<strong>in</strong>g andFire Codes website52 “Trade-off Compliance for Build<strong>in</strong>gs: Specifications for Calculation Procedures for Demonstrat<strong>in</strong>gCompliance to <strong>the</strong> MNECB” published by <strong>the</strong> Canadian Commission on Build<strong>in</strong>g and Fire Codes.53 “Trade-off Compliance for Houses: Specifications for Calculation Procedures for Demonstrat<strong>in</strong>gCompliance to <strong>the</strong> MNECH” published by <strong>the</strong> Canadian Commission on Build<strong>in</strong>g and Fire Codes.54 For more <strong>in</strong>formation, please see http://irc.nrc-cnrc.gc.ca/codes/home_E.shtml.63


CAN 55MNECH1997CHNINDECBCJAPCanadian Codes CentreGuide: “PerformanceCompliance forHouses: Specificationsfor CalculationProcedures forDemonstrat<strong>in</strong>gCompliance to <strong>the</strong>MNECH 1997 Us<strong>in</strong>gWhole Build<strong>in</strong>gPerformance”Canadian Codes CentreCode for Acceptance of<strong>Energy</strong>-EfficientBuild<strong>in</strong>g ConstructionECO-III website:http://www.eco3.org/Manual: “QualityPerformanceEvaluation: Manual forBuild<strong>in</strong>g Materials” 56Guide: “A Quick Lookat Hous<strong>in</strong>g <strong>in</strong> Japan”(August 2008) 57In addition to user’s guides, <strong>the</strong> Centre providescommentaries and sem<strong>in</strong>ars to <strong>the</strong> construction<strong>in</strong>dustry expla<strong>in</strong><strong>in</strong>g <strong>the</strong> aim and application of coderequirements.Supplement to MNECH 1997 available free of chargeon <strong>the</strong> National Resource Council websiteIn addition to user’s guides, <strong>the</strong> Centre providescommentaries and sem<strong>in</strong>ars to <strong>the</strong> construction<strong>in</strong>dustry expla<strong>in</strong><strong>in</strong>g <strong>the</strong> aim and application of coderequirements.The document serves as a guide for achiev<strong>in</strong>gconstruction quality and acceptance for <strong>the</strong> build<strong>in</strong>genvelope (wall, w<strong>in</strong>dow, door, roof and floor),heat<strong>in</strong>g, HVAC systems, light<strong>in</strong>g, monitor<strong>in</strong>g andcontrols for new construction and additions andretrofits of exist<strong>in</strong>g build<strong>in</strong>gs.The <strong>Energy</strong> Conservation and CommercializationProject Phase-III (ECO-III) is a collaborative projectbetween <strong>the</strong> Government of India and <strong>the</strong> U.S.Agency for International Development, whichpromotes widespread commercialization of energyefficienttechnologies.The website conta<strong>in</strong>s updated <strong>in</strong>formation on projects,events and has relevant documents available fordownload.A protocol outl<strong>in</strong><strong>in</strong>g how to carry out performanceevaluations that will be <strong>in</strong> compliance with <strong>the</strong>provisions of Article 37 Item 2 of <strong>the</strong> Build<strong>in</strong>gStandard.A 68-page booklet that expla<strong>in</strong>s <strong>the</strong> hous<strong>in</strong>g policy <strong>in</strong>Japan with editorial cooperation from <strong>the</strong> M<strong>in</strong>istry ofLand, Infrastructure, Transport and Tourism. Thebooklet reports changes <strong>in</strong> <strong>the</strong> hous<strong>in</strong>g situation andhous<strong>in</strong>g policy <strong>in</strong> Japan.55 For more <strong>in</strong>formation, please see http://irc.nrc-cnrc.gc.ca/codes/home_E.shtml.56 For more <strong>in</strong>formation, please see www.bcj.or.jp/src/en/services/BMManual.pdf.57 For more <strong>in</strong>formation, please see www.bcj.or.jp/en/services/reference.html.64


KORUSAManual for ‘Build<strong>in</strong>gDesign Criteria for<strong>Energy</strong> Sav<strong>in</strong>g,’approved by <strong>the</strong>M<strong>in</strong>istry of Land,Transport and MaritimeAffairs(http://www.kemco.or.kr/build<strong>in</strong>g/v2/; written<strong>in</strong> Korean)Build<strong>in</strong>g <strong>Energy</strong> CodesResource Center(http://resourcecenter.pnl.gov/cocoon/morf/ResourceCenter)A comprehensive implementation guide thatsupplements <strong>the</strong> build<strong>in</strong>g code. The guide conta<strong>in</strong>sdetailed <strong>in</strong>structions on how to comply with <strong>the</strong> code.It <strong>in</strong>cludes a web-based manual and calculation tool.A system developed to provide users with <strong>in</strong>formationabout energy codes (applies to both IECC 2006 andASHRAE 90.1-2007) and beyond code technologies.The follow<strong>in</strong>g media types are available: articles,graphics, onl<strong>in</strong>e tools (e.g., design advisor, room airconditioner cost estimator, back-of-<strong>the</strong>-envelopecalculator), presentations and videos.4.4 Tra<strong>in</strong><strong>in</strong>g and Public InformationKey F<strong>in</strong>d<strong>in</strong>gs All APP countries offer tra<strong>in</strong><strong>in</strong>g sem<strong>in</strong>ars on build<strong>in</strong>g codes but <strong>the</strong> content andfrequency of tra<strong>in</strong><strong>in</strong>g varies. Some sem<strong>in</strong>ars provide <strong>in</strong>structions on how to implement specific code provisions(e.g., HVAC or <strong>in</strong>sulation). O<strong>the</strong>r sem<strong>in</strong>ars <strong>in</strong>struct specifically on how to ensure compliance to codes andrat<strong>in</strong>g schemes (e.g., Australia). Several APP countries offer tra<strong>in</strong><strong>in</strong>g guides or manuals and regularly updatedwebsites that offer current <strong>in</strong>formation on code compliance protocols andregulations. This is one of <strong>the</strong> most <strong>in</strong>expensive, yet effective, methods forencourag<strong>in</strong>g code compliance.There are tra<strong>in</strong><strong>in</strong>g sem<strong>in</strong>ars that encompass a wide range of subjects related to build<strong>in</strong>genergy codes across APP countries. Several APP countries hold tra<strong>in</strong><strong>in</strong>g sem<strong>in</strong>ars thatprovide <strong>in</strong>structions on how to implement certa<strong>in</strong> provisions of <strong>the</strong> code such asspecifications on HVAC (e.g., Canada) or <strong>in</strong>sulation (e.g., Japan). An Australian <strong>in</strong>stituteeven hosts a tra<strong>in</strong><strong>in</strong>g course specifically dedicated to <strong>in</strong>struct<strong>in</strong>g on how to ensurecompliance with mechanical services codes, standards and rat<strong>in</strong>g schemes of HVACsystems design (ABCB, 2009).Dissem<strong>in</strong>ation of <strong>in</strong>formation is one of <strong>the</strong> most effective, and at <strong>the</strong> same time most<strong>in</strong>expensive, methods for promot<strong>in</strong>g code compliance. In <strong>the</strong> United States, it is crucialbecause of <strong>the</strong> vary<strong>in</strong>g codes adopted across <strong>the</strong> country. S<strong>in</strong>ce <strong>the</strong> early 1990s, DOE hashosted a website (www.energycodes.gov) that provides free education and tra<strong>in</strong><strong>in</strong>gmaterial as well as software <strong>in</strong> support of <strong>the</strong> latest IECC and ASHRAE 90.1 codes (DOE,2008a). To encourage <strong>the</strong> adoption of energy codes, <strong>the</strong> website’s featured adoption maps65


and local jurisdiction contact <strong>in</strong>formation are regularly updated thus provid<strong>in</strong>g a clearcomparison of states that have adopted <strong>the</strong> most updated build<strong>in</strong>g energy codes, statesthat have an older version of <strong>the</strong> codes <strong>in</strong> place and states that have no statewide codeenforced.South Korea’s build<strong>in</strong>g code provides a comprehensive manual prepared by KEMCO,which is <strong>in</strong>tended to give <strong>the</strong> user all <strong>the</strong> <strong>in</strong>formation required to comply with <strong>the</strong>build<strong>in</strong>g code.A list of some of <strong>the</strong> most prom<strong>in</strong>ent tra<strong>in</strong><strong>in</strong>g courses and <strong>in</strong>formation materials provided<strong>in</strong> each country is available <strong>in</strong> Appendix D. The table <strong>in</strong> Appendix D illustrates <strong>the</strong>diverse approaches each APP country is undertak<strong>in</strong>g and <strong>the</strong> different stakeholders<strong>in</strong>volved.4.5 Some Innovative Programs and SummaryInternational comparisons can be helpful to policy makers by giv<strong>in</strong>g <strong>the</strong>m an <strong>in</strong>dicationof what is successful elsewhere. Implementation programs are <strong>in</strong>tegrally l<strong>in</strong>ked withmany aspects of a country’s political system and policy approach. As such, <strong>the</strong>re is nos<strong>in</strong>gle right answer to what is <strong>in</strong>novative. Each country has someth<strong>in</strong>g <strong>in</strong>novative thatmay be useful elsewhere. This section outl<strong>in</strong>es a few overarch<strong>in</strong>g ideas and highlightssome examples of <strong>in</strong>novation.Effective implementation of build<strong>in</strong>g energy codes requires a comprehensive approach.The elements that are typically needed <strong>in</strong>clude: Tra<strong>in</strong><strong>in</strong>g to help code officials and <strong>the</strong> build<strong>in</strong>g design and construction communitiesunderstand <strong>the</strong> requirements and how to meet <strong>the</strong>m. Tools such as checklists or compliance software to ease <strong>the</strong> job of check<strong>in</strong>g forcompliance. Review of build<strong>in</strong>g designs and <strong>in</strong>spections of actual construction. Incentives for compliance.Countries vary quite a bit on <strong>the</strong> details of <strong>the</strong>se elements. Some countries reach out to abroader spectrum of stakeholders <strong>in</strong> <strong>the</strong>ir tra<strong>in</strong><strong>in</strong>g than do o<strong>the</strong>rs, and tra<strong>in</strong><strong>in</strong>g programsmay cover different issues <strong>in</strong> different countries. Japan has very extensive tra<strong>in</strong><strong>in</strong>gprograms for its build<strong>in</strong>g energy codes. For example, <strong>the</strong> Japanese government recentlyfunded over 100 tra<strong>in</strong><strong>in</strong>g sem<strong>in</strong>ars over several months regard<strong>in</strong>g a s<strong>in</strong>gle set of changesto <strong>the</strong> exist<strong>in</strong>g code. The tra<strong>in</strong><strong>in</strong>g covers a range of issues related to energy efficiency <strong>in</strong>build<strong>in</strong>gs, not just meet<strong>in</strong>g <strong>the</strong> m<strong>in</strong>imum requirements of <strong>the</strong> code.Most countries have at least one type of compliance tool, usually at a m<strong>in</strong>imum astandardized format for compliance checklists. Many also have software to aid withcompliance check<strong>in</strong>g, particularly when trade-off methods are used for compliance. Thesoftware varies <strong>in</strong> <strong>the</strong> consistency of <strong>the</strong> results it produces and whe<strong>the</strong>r or not it is freelyavailable. The United States, for example, has a longstand<strong>in</strong>g program to provide freesoftware that local jurisdictions can rely on to implement <strong>the</strong>ir codes. Ensur<strong>in</strong>g that <strong>the</strong>software is free is important <strong>in</strong> <strong>the</strong> United States because it encourages local jurisdictionsto adopt <strong>the</strong> national model standards. Countries where codes are adopted centrally may66


not need to provide such software free of charge, though <strong>the</strong>y will still need to ensure that<strong>the</strong> available software provides accurate and consistent results.While all countries with mandatory codes review build<strong>in</strong>g designs, not all countries<strong>in</strong>spect actual construction. Experience <strong>in</strong> o<strong>the</strong>r fields like pollution monitor<strong>in</strong>g andpolic<strong>in</strong>g of speed limits <strong>in</strong>dicates that actual checks on compliance do improvecompliance. Jurisdictions with strong <strong>in</strong>spection programs like California have seensignificant improvements <strong>in</strong> build<strong>in</strong>g energy efficiency—to <strong>the</strong> po<strong>in</strong>t that per capitaelectricity consumption has been stable for decades despite major economic growth overthat period. To our knowledge, besides anecdotal evidence, <strong>the</strong>re are no broad surveysthat compare <strong>the</strong> results of build<strong>in</strong>g energy code enforcement programs acrossjurisdictions with vary<strong>in</strong>g practices.South Korea has set up a system requir<strong>in</strong>g several checks, <strong>in</strong>clud<strong>in</strong>g <strong>the</strong> signatures ofboth a certified architect and a certified eng<strong>in</strong>eer, as well as onsite <strong>in</strong>spection by localgovernment officials. South Korea has seen enforcement of its build<strong>in</strong>g energy codes gofrom low levels to more than 50% compliance with this approach <strong>in</strong> recent years. Ch<strong>in</strong>ahas developed an <strong>in</strong>spection system rely<strong>in</strong>g heavily on third-party <strong>in</strong>spectors. These thirdparties must pass exams to obta<strong>in</strong> certification as build<strong>in</strong>g energy code verifiers. This hasallowed Ch<strong>in</strong>a to rapidly <strong>in</strong>crease <strong>the</strong> number of <strong>in</strong>spectors, although <strong>the</strong>re are alsoquestions about <strong>the</strong> potential conflict of <strong>in</strong>terest of such private <strong>in</strong>spectors and <strong>the</strong> rigor of<strong>the</strong> certification procedures <strong>in</strong> some localities. Ch<strong>in</strong>a’s approach may be <strong>in</strong>novative andof <strong>in</strong>terest to India, for example, <strong>in</strong> that India too will likely want to consider options for<strong>in</strong>spect<strong>in</strong>g build<strong>in</strong>gs once India’s jurisdictions adopt <strong>the</strong> ECBC.Almost all countries with build<strong>in</strong>g energy codes have some <strong>in</strong>centives for compliance,but <strong>the</strong> specific <strong>in</strong>centives vary. In some jurisdictions, build<strong>in</strong>g owners are not allowed tooccupy a build<strong>in</strong>g until <strong>the</strong> build<strong>in</strong>g passes <strong>in</strong>spection for compliance with <strong>the</strong> build<strong>in</strong>genergy code. This means that if <strong>the</strong>re is a problem, a build<strong>in</strong>g would have to be retrofittedto comply, which would be expensive and quickly get <strong>the</strong> attention of builders andowners. This approach exists <strong>in</strong> several APP countries <strong>in</strong>clud<strong>in</strong>g Australia, South Korea,and <strong>the</strong> United States. Ch<strong>in</strong>a has also recently adopted rules giv<strong>in</strong>g local build<strong>in</strong>g energycode enforcement organizations this option. Ano<strong>the</strong>r approach is to give f<strong>in</strong>es for noncompliance.Japan and Ch<strong>in</strong>a have recently updated <strong>the</strong>ir rules to provide for f<strong>in</strong>es fornon-compliance. In addition, Japanese code officials can publicize <strong>the</strong> names of propertyowners who fail to submit <strong>in</strong>formation on <strong>the</strong> energy design of <strong>the</strong>ir build<strong>in</strong>gs. SouthKorea has rules that allow build<strong>in</strong>g owners to access several benefits for design<strong>in</strong>gbuild<strong>in</strong>gs that exceed <strong>the</strong> m<strong>in</strong>imum requirements. Under South Korea’s po<strong>in</strong>t system, abuild<strong>in</strong>g must score a m<strong>in</strong>imum of 60 to meet <strong>the</strong> mandatory standard. High scores (morethan 70) make build<strong>in</strong>g owners eligible for subsidized f<strong>in</strong>anc<strong>in</strong>g and/or relaxation ofcerta<strong>in</strong> legal requirements (e.g., maximum floor space <strong>in</strong>dex and maximum build<strong>in</strong>gheight). This is an <strong>in</strong>terest<strong>in</strong>g way to encourage build<strong>in</strong>g owners to exceed <strong>the</strong> m<strong>in</strong>imumstandard. Both Japan and Ch<strong>in</strong>a have also experimented with such an approach <strong>in</strong> certa<strong>in</strong>localities. O<strong>the</strong>r countries like <strong>the</strong> United States, Australia and Canada have systems setup to reward high-performance build<strong>in</strong>gs, but <strong>the</strong>se systems are not as <strong>in</strong>tegrally l<strong>in</strong>ked to<strong>the</strong> code compliance system.The question of <strong>in</strong>novation depends on perspective and needs. For countries that want toexpand <strong>the</strong>ir <strong>in</strong>spection capabilities rapidly, Ch<strong>in</strong>a has created an <strong>in</strong>terest<strong>in</strong>g system of67


certify<strong>in</strong>g third-party verifiers or <strong>in</strong>spectors. The United States and Australia might f<strong>in</strong>dSouth Korea’s approach of provid<strong>in</strong>g <strong>in</strong>centives for exceed<strong>in</strong>g <strong>the</strong> m<strong>in</strong>imum standards <strong>in</strong>a structured, <strong>in</strong>tegrated way to be <strong>in</strong>novative. Some APP countries might f<strong>in</strong>d <strong>in</strong>terest<strong>in</strong>g<strong>in</strong>sights from <strong>the</strong> specific requirements that have proven feasible <strong>in</strong> Australia or Japan,for example. These are just a few examples of how countries might benefit by observ<strong>in</strong>gwhat has worked elsewhere.5 ConclusionsAPP countries have all <strong>in</strong>dicated a strong <strong>in</strong>terest <strong>in</strong> improv<strong>in</strong>g build<strong>in</strong>g energy efficiency.Each APP country has one or more build<strong>in</strong>g energy codes. The codes have become morestr<strong>in</strong>gent and complex over time. The codes cover a range of issues that affect build<strong>in</strong>genergy use. The <strong>in</strong>sulat<strong>in</strong>g properties of <strong>the</strong> build<strong>in</strong>g envelope (<strong>the</strong> walls, roof, w<strong>in</strong>dows,etc.) make up <strong>the</strong> majority of <strong>the</strong> requirements <strong>in</strong> most countries. The codes <strong>in</strong> mostcountries also promote <strong>the</strong> efficiency of HVAC, hot water supply, and light<strong>in</strong>g systems.Many countries also <strong>in</strong>clude certa<strong>in</strong> site-specific renewable energy options as alternativesto o<strong>the</strong>r requirements (for example, solar water heat<strong>in</strong>g).Codes <strong>in</strong> all countries provide some degree of flexibility. There are several approaches:trade-off options for build<strong>in</strong>g envelope requirements, scored po<strong>in</strong>t systems for <strong>the</strong> rangeof requirements and whole build<strong>in</strong>g energy performance compliance paths. Thisflexibility enables <strong>the</strong> codes to be more str<strong>in</strong>gent while still allow<strong>in</strong>g for a wide range <strong>in</strong>build<strong>in</strong>g types.APP countries have taken many different approaches to implement<strong>in</strong>g <strong>the</strong>ir codes. MostAPP countries require <strong>the</strong> review of build<strong>in</strong>g designs for compliance with <strong>the</strong> build<strong>in</strong>genergy code and <strong>in</strong>spection of actual construction to ensure that it matches <strong>the</strong> design.Some countries have local build<strong>in</strong>g code officials conduct <strong>the</strong> reviews and <strong>in</strong>spections,while o<strong>the</strong>rs may rely primarily on certified third-party reviewers and <strong>in</strong>spectors.Countries use both carrots and sticks to <strong>in</strong>crease compliance rates. Carrots <strong>in</strong>clude freetra<strong>in</strong><strong>in</strong>g and compliance software as well as <strong>in</strong>centives for build<strong>in</strong>gs that exceed <strong>the</strong> coderequirements such as low-<strong>in</strong>terest f<strong>in</strong>anc<strong>in</strong>g and relaxation of certa<strong>in</strong> zon<strong>in</strong>g requirements.To discourage non-compliance, some countries refuse to permit occupancy until codesare met or give f<strong>in</strong>es. APP countries have also developed a range of tools to help build<strong>in</strong>gdesigners and builders comply with codes.<strong>Energy</strong> use <strong>in</strong> build<strong>in</strong>gs accounts for approximately one-third of <strong>the</strong> total energy use <strong>in</strong>APP countries. APP countries will likely account for <strong>the</strong> overwhelm<strong>in</strong>g majority ofprojected new construction worldwide between now and 2020. Ch<strong>in</strong>a alone will accountfor half of new global construction. Build<strong>in</strong>gs <strong>in</strong> APP countries last an average of 20 to50 years, and it is much easier to change <strong>the</strong> energy footpr<strong>in</strong>t of a build<strong>in</strong>g when it is builtthan to retrofit it later. Hence, build<strong>in</strong>gs constructed <strong>in</strong> APP countries <strong>in</strong> <strong>the</strong> next decadeswill have a major impact on global energy consumption trends through much of <strong>the</strong>rema<strong>in</strong><strong>in</strong>g century. Build<strong>in</strong>g energy codes provide an effective and important tool <strong>in</strong>promot<strong>in</strong>g energy efficiency <strong>in</strong> new construction, which <strong>in</strong> turn can help APP countriesmeet <strong>the</strong>ir environmental and energy security goals.68


Appendix A – Enforcement FrameworkPo<strong>in</strong>t of ControlIncentives for ComplianceAUSBCA 2007CANMNECB1997 andMNECH1997DesignVerificationState andterritorialgovernments,but must follownationalmandatorym<strong>in</strong>imum energyefficiencyrequirements(ABCB, 2008).Prov<strong>in</strong>ces haveauthority overbuild<strong>in</strong>g codes,but enforcementgenerally falls tomunicipalities (J.Clark, personalcommunication).InspectionsAuthority FrequencyState and Inspectionsterritorial dur<strong>in</strong>g and aftergovernments, constructionbut must follow (Australiannational Institute ofmandatory Build<strong>in</strong>g, 2004).m<strong>in</strong>imumenergyefficiencyrequirements(ABCB, 2008).Five third-partyagenciesappo<strong>in</strong>ted bynationalgovernment,specificallyNaturalResourcesCanada andNumber andtypes of<strong>in</strong>spections varydepend<strong>in</strong>g onprov<strong>in</strong>cial ormunicipalguidel<strong>in</strong>es 58PenaltiesIf build<strong>in</strong>g does not pass<strong>in</strong>spection, build<strong>in</strong>g ownersare not allowed to occupybuild<strong>in</strong>g.If a build<strong>in</strong>g is <strong>in</strong> noncompliance,<strong>the</strong>n prov<strong>in</strong>ce andterritory governments usuallywithhold construction andoccupancy permits and/orissue f<strong>in</strong>es.RewardsSome local governmentscurrently provide <strong>in</strong>centivesfor compliance.For example, <strong>in</strong> <strong>the</strong> city ofProspect, if ceil<strong>in</strong>g<strong>in</strong>sulation, <strong>in</strong>-home energymonitors and/or hot waterservices are replaced withgas-boosted solar waterheaters, <strong>the</strong>n money isawarded (Civic Centre,2008).If build<strong>in</strong>g design hasoperat<strong>in</strong>g energyperformance 25% > samebuild<strong>in</strong>g constructed to <strong>the</strong>MNECB m<strong>in</strong>imumrequirements, <strong>the</strong>n builderowner receives a monetaryreward (usually twice <strong>the</strong>value of energy sav<strong>in</strong>gs58 Some prov<strong>in</strong>ces have <strong>in</strong>spection authorities which are generally active <strong>in</strong> rural areas or smaller towns, but <strong>the</strong>re are no federal authorities present <strong>in</strong> <strong>the</strong>se areas.In <strong>the</strong> case of Vancouver and Montreal, <strong>the</strong> cities have unique constitutional capabilities, which allow <strong>the</strong>m to adopt build<strong>in</strong>g codes without prov<strong>in</strong>cial consent.The prov<strong>in</strong>cial and municipal authorities have <strong>the</strong> same punitive powers. Enforcement varies widely with <strong>the</strong> large cities approach<strong>in</strong>g levels achieved <strong>in</strong>California (J. Clark, personal communication).69


Po<strong>in</strong>t of ControlIncentives for ComplianceCANMNECB1997 andMNECH1997,cont<strong>in</strong>uedCHNDesignVerificationCertified<strong>in</strong>dependentorganizationsappo<strong>in</strong>ted bycity governmentsthrough <strong>the</strong>irconstructionadm<strong>in</strong>istrationdepartments. 60InspectionsAuthority FrequencyStandardsCouncil ofCanada,however, mostenforcementfalls tomunicipalities(NAEWG,2002; J. Clark,personalcommunication)Certified At least once<strong>in</strong>dependent dur<strong>in</strong>gorganizations constructionappo<strong>in</strong>ted bycitygovernmentsthrough <strong>the</strong>irconstructionadm<strong>in</strong>istrationdepartments. 61PenaltiesIf build<strong>in</strong>g design is notapproved by certified<strong>in</strong>dependent draw<strong>in</strong>gverification center, <strong>the</strong>nconstruction is not allowed tobeg<strong>in</strong>.If construction has startedwithout approval, <strong>the</strong>nconstruction of build<strong>in</strong>g willbe suspended and a specifiedRewardspredicted for <strong>the</strong> first year ofoperations (Pope andDubrous, 2001). Incentiveprogram lasted from 1996-2004. 59If <strong>the</strong> build<strong>in</strong>g exceeds <strong>the</strong>requirements of <strong>the</strong> code,<strong>the</strong>n some jurisdictions allowlimited relaxation of zon<strong>in</strong>grequirements for <strong>the</strong>build<strong>in</strong>g.59 From 1996 to 2004, Natural Resources Canada carried out <strong>the</strong> Commercial Build<strong>in</strong>gs Incentive Program, an <strong>in</strong>itiative to promote <strong>the</strong> adoption of <strong>the</strong> ModelNational <strong>Energy</strong> Code for Build<strong>in</strong>gs, to encourage <strong>in</strong>creased energy efficiency <strong>in</strong> commercial build<strong>in</strong>gs and to assist <strong>in</strong> <strong>the</strong> reduction of greenhouse gasproduction from <strong>the</strong> commercial build<strong>in</strong>gs sector (Pope and Dubrous 2001). CBIP evaluated <strong>the</strong> performance of <strong>the</strong> proposed design by compar<strong>in</strong>g it to areference build<strong>in</strong>g constructed with representative envelope, light<strong>in</strong>g, and HVAC systems. The program evaluation took a whole-build<strong>in</strong>g performance approach.60 However, <strong>the</strong> M<strong>in</strong>istry of Hous<strong>in</strong>g and Urban-Rural Development (national government) is responsible for supervis<strong>in</strong>g overall code enforcement efforts.61 However, <strong>the</strong> M<strong>in</strong>istry of Hous<strong>in</strong>g and Urban-Rural Development (national government) is responsible for supervis<strong>in</strong>g overall code enforcement efforts.70


DesignVerificationPo<strong>in</strong>t of ControlInspectionsAuthority FrequencyPenaltiestime limit will be granted tomake corrections.Incentives for ComplianceRewardsCHN,cont<strong>in</strong>uedINDECBCJAPIf a build<strong>in</strong>g does not pass<strong>in</strong>spection, <strong>the</strong>n build<strong>in</strong>gowners are not allowed tooccupy <strong>the</strong> build<strong>in</strong>g and itcannot be sold.None currently 62 None currently N.A. N.A. N.A.Localgovernment orthird-parties(referred to as“designatedconfirmationbodies”)(Cab<strong>in</strong>et Officeof Japan, 2006)None required N.A. If property owner fails tosubmit <strong>in</strong>formation on energydesign, <strong>the</strong>n name of propertyowner is publicizedF<strong>in</strong>es for non-complianceIf <strong>in</strong>vest <strong>in</strong> energyconservation projects,<strong>in</strong>clud<strong>in</strong>g energy-efficientbuild<strong>in</strong>gs, <strong>the</strong>n qualify forlow <strong>in</strong>terest loans (APEC<strong>Energy</strong> Work<strong>in</strong>g Group,2006)Also, <strong>in</strong> some jurisdictions,build<strong>in</strong>gs are eligible forrelaxation of certa<strong>in</strong> zon<strong>in</strong>grequirements.62 S<strong>in</strong>ce <strong>the</strong> code is voluntary, <strong>the</strong>re are no mandatory <strong>in</strong>spections, and audits of exist<strong>in</strong>g build<strong>in</strong>gs are voluntary as <strong>in</strong> o<strong>the</strong>r countries. Accord<strong>in</strong>g to ECO-III staff,for o<strong>the</strong>r parts of <strong>the</strong> build<strong>in</strong>g code that are now mandatory, <strong>in</strong>spections are done by local governments.71


Po<strong>in</strong>t of ControlIncentives for ComplianceKORDesignVerificationLocalgovernment orKorea <strong>Energy</strong>ManagementCorporation;f<strong>in</strong>al approval bylocalgovernment(Lee, 2006)InspectionsAuthority FrequencyLocalDur<strong>in</strong>ggovernment construction andupon completedconstruction.Localgovernmentsmay also audit<strong>the</strong> build<strong>in</strong>gsafterconstruction(BAI, 2006).PenaltiesIf build<strong>in</strong>g does not pass<strong>in</strong>spection, <strong>the</strong>n build<strong>in</strong>gowners are not allowed tooccupy build<strong>in</strong>gF<strong>in</strong>es for non-compliance andproducts 63 are prohibited frombe<strong>in</strong>g produced and sold (IEA-DSM, 2009).RewardsIf m<strong>in</strong>imum requirements areexceeded (>60 po<strong>in</strong>ts),subsidized f<strong>in</strong>anc<strong>in</strong>g (e.g.,low-<strong>in</strong>terest loans) and/orrelaxation of zon<strong>in</strong>grequirements (e.g., ability tobuild one extra story, or havea slightly larger build<strong>in</strong>gfootpr<strong>in</strong>t).USAASHRAE90.1-2007 andIECC 2006State and localgovernments(usually local),but may br<strong>in</strong>g <strong>in</strong>third parties(Burby et al.,2000; Bartlett etal., 2003)State and localgovernments(usually local),but may br<strong>in</strong>g <strong>in</strong>third parties(Burby etal.,2000;Bartlett et al.,2003)Number andtypes of<strong>in</strong>spections varydepend<strong>in</strong>g onlocaljurisdictionguidel<strong>in</strong>es(DOE, 2002) 64If build<strong>in</strong>g does not pass<strong>in</strong>spection, build<strong>in</strong>g ownersare not allowed to occupy <strong>the</strong>build<strong>in</strong>g. Build<strong>in</strong>g ownersmust pay for modifications tobr<strong>in</strong>g <strong>the</strong> build<strong>in</strong>g up to code.If commercial build<strong>in</strong>g savesat least 50% of heat<strong>in</strong>g andcool<strong>in</strong>g energy of a build<strong>in</strong>gthat meets ASHRAE 90.1-2007, a tax deduction isawarded of up to $1.80 persquare foot (DOE, 2008b). 65If contractors build homesthat reduce heat<strong>in</strong>g andcool<strong>in</strong>g energy consumptionrelative to IECC and63 Includes electric air conditioners and light<strong>in</strong>g products (e.g., <strong>in</strong>candescent bulbs, fluorescent lamps and self-ballasted lamps).64 However, five site <strong>in</strong>spections are commonly implemented to verify energy features: 1) Pre-<strong>in</strong>spection, 2) Foundation <strong>in</strong>spection, 3) Fram<strong>in</strong>g <strong>in</strong>spection, 4)<strong>in</strong>sulation <strong>in</strong>spection and 5) F<strong>in</strong>al <strong>in</strong>spection (DOE 2002).65 The tax <strong>in</strong>centive is effective through December 31, 2013 (DOE 2008).72


USAASHRAE90.1-2007 andIECC 2006,cont<strong>in</strong>uedDesignVerificationNote: N.A. = Not applicable.Po<strong>in</strong>t of ControlInspectionsAuthority FrequencyPenaltiesIncentives for ComplianceRewardssupplements by 30% or 50%,<strong>the</strong>y are awarded a $1,000credit or $2,000, respectively(DOE 2009). Also, somejurisdictions consider fasterpermitt<strong>in</strong>g for build<strong>in</strong>gs thatexceed <strong>the</strong> code.Appendix B – Build<strong>in</strong>g Test<strong>in</strong>g Agencies and Examples of Test Standards <strong>in</strong> eachAPP CountryAUSTest<strong>in</strong>g Agencies and Certification AssociationsNumerous test<strong>in</strong>g laboratories at <strong>the</strong> <strong>in</strong>dustry, State and territory levels (ABCB, 2008). BCAdef<strong>in</strong>es registered test<strong>in</strong>g authority as:An organization registered by National Association of Test<strong>in</strong>g Authorities to test <strong>in</strong> <strong>the</strong>relevant field; orAn organization outside Australia registered by an authority recognized by <strong>the</strong> NationalAssociation of Test<strong>in</strong>g Authorities through a mutual recognition agreement; orAn organization recognized as be<strong>in</strong>g a registered test<strong>in</strong>g authority under legislation at<strong>the</strong> time <strong>the</strong> test was undertaken.National Association of Test<strong>in</strong>g Authorities (NATA, 2009)Examples of Test StandardsReferenced <strong>in</strong> Code(or featured test protocols) 66Standards referenced <strong>in</strong> BCA 2007:Australian Standard: AS/NZS 4859.1 Materialsfor <strong>the</strong> <strong>the</strong>rmal <strong>in</strong>sulation ofbuild<strong>in</strong>g (prescribes testand calculation reports)(ACBC, 2008) AS 3823 Performance ofelectrical appliances – airconditioners and heat66 The list of test standards and protocols is not exhaustive.73


AUS,cont<strong>in</strong>uedCANTest<strong>in</strong>g Agencies and Certification AssociationsLead<strong>in</strong>g accredit<strong>in</strong>g organization for energy efficiencyPrivate, non-profit organization; endorsed by <strong>the</strong> governmentalso responsible for <strong>the</strong> accreditation of <strong>in</strong>spection bodies and serves as Australia’sGood Laboratory Practices compliance monitor<strong>in</strong>g authority for <strong>the</strong> OECD Pr<strong>in</strong>ciplesof Good Laboratory Practices.Applies <strong>in</strong>ternational assessment criteria—ISO/IEC 17025, plus National Associationof Test<strong>in</strong>g Authorities’ own regulations (Foster, 2004)Its labs are exclusively for standards development and compliance programs <strong>in</strong>Australia (Foster, 2004)Canada (Natural Resources Canada and <strong>the</strong> Standards Council of Canada) recognizes fiveentities to certify <strong>the</strong> energy efficiency of products and to accord<strong>in</strong>gly provide a verificationmark under <strong>the</strong> <strong>Energy</strong> <strong>Efficiency</strong> Regulations (NAEWG, 2002):1. Air-Condition<strong>in</strong>g and Refrigeration Institute2. CSA International3. Intertek Test<strong>in</strong>g Services NA Inc.4. Intertek Test<strong>in</strong>g Services NA Ltd., and5. Underwriters Laboratories, Inc.Test standards for water heat<strong>in</strong>g are also referenced <strong>in</strong> <strong>the</strong> code (NRC, 1997).The standard on light<strong>in</strong>g (CAN/CSA-C654-M91) referenced <strong>in</strong> MNECB 1997, which appliesfor <strong>in</strong>dustrial, commercial and residential build<strong>in</strong>gs, provides <strong>the</strong> measurements to test <strong>the</strong>efficiency of fluorescent lamp ballasts for use <strong>in</strong> fluorescent lum<strong>in</strong>aries (NRC, 1997).Examples of Test StandardsReferenced <strong>in</strong> Code(or featured test protocols) 66pumps: test methods –ducted air conditioners andair-to-air heat pumps–test<strong>in</strong>g and rat<strong>in</strong>g ofperformance)O<strong>the</strong>r Standards:British Standards: BS 7190 Assess<strong>in</strong>g <strong>the</strong>rmalperformance of lowtemperaturehot waterboilers us<strong>in</strong>g a test rigStandards referenced <strong>in</strong> MNECH1997:Canadian Standards Association: CAN/CSA-C446-94Standard Methods of Testfor Rat<strong>in</strong>g <strong>the</strong> Performanceof Heat-RecoveryVentilatorsO<strong>the</strong>r Standards:American Society for Test<strong>in</strong>g andMaterials: C 177-85 (1993) StandardTest Method for Steady-State Heat FluxMeasurement and Thermal74


Test<strong>in</strong>g Agencies and Certification AssociationsExamples of Test StandardsReferenced <strong>in</strong> Code(or featured test protocols) 66Transmission Properties byMeans of Heat Flow MeterApparatusE 283-91 Standard TestMethod for Determ<strong>in</strong><strong>in</strong>gRate of Air LeakageThrough ExteriorW<strong>in</strong>dows, Curta<strong>in</strong> Wallsand Doors Under SpecifiedPressure DifferencesAcross <strong>the</strong> Specimen (also<strong>in</strong> MNECB 1997).CAN,cont<strong>in</strong>uedCode also references “PerformanceCompliance for Houses:Specifications for CalculationProcedures for Demonstrat<strong>in</strong>gCompliance to <strong>the</strong> Model National<strong>Energy</strong> Code for Houses Us<strong>in</strong>gWhole House Performance”prepared by Canada’s NationalResearch Council (NRC, 1997).Standards referenced <strong>in</strong> MNECB1997:Canadian Standards Association: C390-93 <strong>Energy</strong> <strong>Efficiency</strong>Test Methods for Three-Phase Induction Motors75


CAN,cont<strong>in</strong>uedCHNTest<strong>in</strong>g Agencies and Certification AssociationsThe National Center for Quality Supervision and Test of Build<strong>in</strong>g Eng<strong>in</strong>eer<strong>in</strong>g (NCQDE,2009):Established by <strong>the</strong> Ch<strong>in</strong>a Academy of Build<strong>in</strong>g ResearchHolds numerous labs that test for build<strong>in</strong>g structure, build<strong>in</strong>g material test<strong>in</strong>g, chemicalmaterial, air condition<strong>in</strong>g and clean<strong>in</strong>g, water supply and dra<strong>in</strong>age, door/w<strong>in</strong>dow andcurta<strong>in</strong> wall, build<strong>in</strong>g energy efficiency, build<strong>in</strong>g foundation, build<strong>in</strong>g acoustics, andillum<strong>in</strong>ationCh<strong>in</strong>a’s Standard Certification CenterExamples of Test StandardsReferenced <strong>in</strong> Code(or featured test protocols) 66(Air Condition<strong>in</strong>g)CAN/CSA-C439-88Standard Methods of Testfor Rat<strong>in</strong>g <strong>the</strong> Performanceof Heat-RecoveryVentilatorsCAN/CSA-C654-M91Fluorescent Lamp BallastEfficacy MeasurementsMethod for Calculat<strong>in</strong>g <strong>the</strong> ThermalResistance of Build<strong>in</strong>g Assemblies(Appendix C)Protocols referenced <strong>in</strong> Ch<strong>in</strong>aDesign Standard for <strong>Energy</strong><strong>Efficiency</strong> of Build<strong>in</strong>gs <strong>in</strong> HotSummer and Cold W<strong>in</strong>ter Zone2001:Build<strong>in</strong>g day light<strong>in</strong>g andCalculation of Average ThermalConductivity Coefficient ofExterior Envelope Wall (Annex A)Formerly known as <strong>the</strong> Ch<strong>in</strong>a Certification Center for <strong>Energy</strong> Conservation ProductsA quasi-governmental agency founded and owned by government but act<strong>in</strong>g as a nonprofitand <strong>in</strong>dependent third-party certification body (Tienan, 2006)Covers light<strong>in</strong>g products, build<strong>in</strong>g materials (e.g., w<strong>in</strong>dows and sealed <strong>in</strong>sulat<strong>in</strong>g glassunit) and <strong>in</strong>dustry products (e.g., air compressors l<strong>in</strong>e traps for air condition<strong>in</strong>g powerProtocols referenced <strong>in</strong> Ch<strong>in</strong>aDesign Standards for <strong>Energy</strong><strong>Efficiency</strong> of Residential Build<strong>in</strong>gs2003:Methods for Calculation of <strong>the</strong>76


CHN,cont<strong>in</strong>uedINDTest<strong>in</strong>g Agencies and Certification Associationssystem and power control devices) (Tienan, 2006)Lead<strong>in</strong>g <strong>the</strong> development and implementation of Ch<strong>in</strong>a’s energy efficiencyendorsement label, now used as a requirement for energy-efficient products <strong>in</strong> somegovernment procurement programs (ELI, 2005; Tienan, 2006)India currently does not have facilities to test <strong>the</strong> <strong>the</strong>rmal properties of certa<strong>in</strong> build<strong>in</strong>gmaterials, which <strong>in</strong>clude <strong>in</strong>sulation, masonry, roof<strong>in</strong>g materials and o<strong>the</strong>r types of materials.ECBC 2007 also references India’s standards for water heaters and for dry-type transformers(and a note that oil-type transformers should go by Central Electrical Authority norms).Examples of Test StandardsReferenced <strong>in</strong> Code(or featured test protocols) 66Annual Cool<strong>in</strong>g and Heat<strong>in</strong>gConsumptions or ConsumptionSimplified Method to Calculate <strong>the</strong>Annual Air-Condition<strong>in</strong>g andHeat<strong>in</strong>g Electricity ConsumptionFactor of Build<strong>in</strong>gs (Appendix A)Method to Calculate Factors M Hand M C for Exterior Shad<strong>in</strong>gDevices (W<strong>in</strong>dows) (Appendix B)Build<strong>in</strong>g codes do not reference anytest standards.Standards referenced <strong>in</strong> ECBC2007:Indian Standards: Air Conditioners and Boilers Water HeatersO<strong>the</strong>r Standards:American Society for Test<strong>in</strong>g andMaterials: Solar reflectance andemittance (under <strong>the</strong> section of<strong>the</strong> code on cool roofs)Protocols referenced <strong>in</strong> ECBC2007:Procedure for determ<strong>in</strong><strong>in</strong>gFenestration product U-Factor andSolar Heat Ga<strong>in</strong> Coefficient(Appendix D)77


Test<strong>in</strong>g Agencies and Certification AssociationsExamples of Test StandardsReferenced <strong>in</strong> Code(or featured test protocols) 66IND,cont<strong>in</strong>uedJAPKORGeneral Build<strong>in</strong>g Research Corporation of Japan (ReaD, 2004):Officially recognized by <strong>the</strong> M<strong>in</strong>istry of International Trade and Industry, based onSection 34 of <strong>the</strong> Civil Code of Japan; established <strong>in</strong> 1964Certifies and <strong>in</strong>spects build<strong>in</strong>g materials <strong>in</strong> accordance to <strong>the</strong> Industrial StandardizationLaw (build<strong>in</strong>g-plan confirmation and onsite <strong>in</strong>spection conforms to <strong>the</strong> Build<strong>in</strong>gStandard Law of Japan)Performs technical appraisal of new build<strong>in</strong>g materials and high-rise structuresConducts calibration of test<strong>in</strong>g <strong>in</strong>struments and certification of <strong>the</strong> quality andcompliance of systems to <strong>the</strong> ISO 9001 standardsMember of Japanese Industrial Standards Certification Bodies AssociationCompliance test<strong>in</strong>g of build<strong>in</strong>g components and construction equipment are based on JapaneseIndustrial Standards and o<strong>the</strong>r standards (ReaD, 2004).BDCES references test<strong>in</strong>g and material standards mostly from <strong>the</strong> Korean Agency forTechnology and Standards. In o<strong>the</strong>r cases, BDCES ei<strong>the</strong>r spells out <strong>the</strong> test<strong>in</strong>g procedure <strong>in</strong>itself or references o<strong>the</strong>r government provisions such as: <strong>the</strong> Provisions for <strong>Efficiency</strong> ControlMach<strong>in</strong>ery & Materials (MKE 2008-99) and <strong>the</strong> Provisions for Facilitat<strong>in</strong>g <strong>the</strong> Distribution ofHighly Efficient <strong>Energy</strong> Mach<strong>in</strong>ery & Materials (MKE 2008-218). These provisions, <strong>in</strong> turn,reference Korea Industrial Standards from Korean Agency for Technology and Standards.Calculations: Build<strong>in</strong>g EnvelopeTrade-off Method (Appendix E)Standards referenced <strong>in</strong>DCGREUH 1999 and CCREUB1999:Japanese Industrial Standard: JIS R3107-1998 HeatResistance of Glass Plates andMethods of Calculat<strong>in</strong>g HeatTransfer Coefficient <strong>in</strong>Construction JIS A1420-1994 Heat<strong>in</strong>sulationPerformance TestMethods for Heat-<strong>in</strong>sulationMaterials and StructuralMaterials for Hous<strong>in</strong>g JIS R3106-1998 (TestMethods for Transmittance,Reflectance, Emissivity andInsulation AcquisitionCoefficient of Glass Plates)Korea Standard KSL9016: Test Methods forThermal TransmissionProperties of ThermalInsulations; KSF2277: Thermal Insulation:78


Test<strong>in</strong>g Agencies and Certification AssociationsKorean Agency for Technology and Standards is a government agency under M<strong>in</strong>istry ofKnowledge Economy, orig<strong>in</strong>ally established <strong>in</strong> 1883 and recognized as NationalStandardization Body <strong>in</strong> 1999. Korean Agency for Technology and Standards is responsible fordevelop<strong>in</strong>g Korea Industrial Standards, <strong>the</strong> primary reference for test<strong>in</strong>g and material standards<strong>in</strong> BDCES.Test<strong>in</strong>g is performed by various nationally accredited test<strong>in</strong>g agencies (both governmental andnon-governmental). Those relevant to build<strong>in</strong>g energy code <strong>in</strong>clude: (year established)Examples of Test StandardsReferenced <strong>in</strong> Code(or featured test protocols) 66Determ<strong>in</strong>ation of Steady-StateThermal TransmissionProperties—Calibrated andGuarded Hot Box KSF2278: Test Method ofThermal Resistance forW<strong>in</strong>dows and DoorsKOR,cont<strong>in</strong>uedUSA Korea Institute of Construction Materials (1994) Korea Electric Test<strong>in</strong>g Institute (1970) Korea Institute of Light<strong>in</strong>g Technology (1999) Korea Institute of Construction Technology (1984) Korea <strong>Energy</strong> Appliances Industry Association (1983)Alternatively, large build<strong>in</strong>gs far exceed<strong>in</strong>g energy efficiency can be certified for High-<strong>Efficiency</strong> <strong>Energy</strong> Build<strong>in</strong>g (MKE 2008-14) directly from <strong>the</strong> Korean <strong>Energy</strong> ManagementCorporation. The Korea Institute of <strong>Energy</strong> Research, <strong>the</strong> Korea Institute of ConstructionTechnology and <strong>the</strong> Korean <strong>Energy</strong> Management Corporation are responsible for test<strong>in</strong>g <strong>the</strong>sebuild<strong>in</strong>gs’ total energy efficiency (<strong>in</strong>stead of <strong>in</strong>dividual component efficiencies). The teststandards are outl<strong>in</strong>ed <strong>in</strong> <strong>the</strong> Build<strong>in</strong>g <strong>Energy</strong> <strong>Efficiency</strong> Rat<strong>in</strong>g System (MKE 2008-14).Widely recognized certification associations <strong>in</strong>clude:American National Standards InstituteNational Fenestration Rat<strong>in</strong>g CouncilNational Institute of Standards and TechnologyInternational Standards Association (develops and publishes standards):Standards referenced <strong>in</strong> ASHRAE90.1-2007:American Society for Test<strong>in</strong>g andMaterials: ASTM C177-97: StandardTest Method for Steady-StateHeat Flux Measurements andThermal Transmittance79


USA,cont<strong>in</strong>uedTest<strong>in</strong>g Agencies and Certification AssociationsAmerican Society for Test<strong>in</strong>g and MaterialsTest standards for water heat<strong>in</strong>g and cool<strong>in</strong>g are also referenced <strong>in</strong> <strong>the</strong> code (ASHRAE 90.1-2007).With <strong>the</strong> exception of lamps, third-party certification is not mandatory (NAEWG, 2002). Forlamps, <strong>the</strong> U.S. Department of <strong>Energy</strong>, through <strong>the</strong> National Institute of Standards andTechnology, certifies certa<strong>in</strong> laboratories for test<strong>in</strong>g and certification.Examples of Test StandardsReferenced <strong>in</strong> Code(or featured test protocols) 66Properties by Means of <strong>the</strong>Guarded-Hot-Plate ApparatusNational Fenestration Rat<strong>in</strong>gCouncil: NFRC 100-2004 Procedure forDeterm<strong>in</strong><strong>in</strong>g FenestrationProduct U-FactorsUnderwriters Laboratories, Inc.: UL 181A-94 Closure Systemsfor Use with Rigid Air Ductsand Air Connectors UL 181B-95 Closure Systemsfor Use with Flexible AirDucts and Air ConnectorsO<strong>the</strong>r Standards:International Organization forStandardization: ISO 13256-1 (1998) Water-Source Heat Pumps—Test<strong>in</strong>gand Rat<strong>in</strong>g for Performance—Part 1: Water-to-Air andBr<strong>in</strong>e-to-Air Heat PumpsStandards referenced <strong>in</strong> IECC 2006:American Society for Test<strong>in</strong>g andMaterials: E 283—04 Test Method forDeterm<strong>in</strong><strong>in</strong>g <strong>the</strong> Rate ofAir Leakage Through80


USA,cont<strong>in</strong>uedTest<strong>in</strong>g Agencies and Certification AssociationsExamples of Test StandardsReferenced <strong>in</strong> Code(or featured test protocols) 66Exterior W<strong>in</strong>dows, Curta<strong>in</strong>Walls and Doors UnderSpecified PressureDifferences Across <strong>the</strong>SpecimenU.S. Department of <strong>Energy</strong>:10 CFR Part 430, SubpartB, Appendix E (1998)Uniform Test Method forMeasur<strong>in</strong>g <strong>the</strong> <strong>Energy</strong>Consumption of WaterHeatersNational Fenestration Rat<strong>in</strong>gCouncil:100—01 Procedure forDeterm<strong>in</strong><strong>in</strong>g FenestrationProduct U-Factors—Second EditionSheet Metal and Air Condition<strong>in</strong>gContractors National Association,Inc.SMACNA—85 HVAC AirDuct Leakage Test Manual81


Appendix C – Compliance SoftwareAUSBCA 2007SoftwareMethodologyDescribed <strong>in</strong>CodesExist<strong>in</strong>gSoftwareYes 67 AccuRate 68BERSPro,FirstRate 5,Beaver/ESP,IES Apache,TAS, ICE,TRACE 700,Carrier E20-IIeQUEST,VisualDOE,<strong>Energy</strong>PlusAccessibilityProvided by Australia’snational science agency:Commonwealth Scientificand Research Organisation.Software is easilyaccessible, but must bepurchased.Privately developedsoftware; for purchaseA suite of U.S. Departmentof <strong>Energy</strong> software adaptedby Team Catalyst <strong>in</strong>Australia; Accessible fordownload on <strong>the</strong> <strong>in</strong>ternetDescriptionAccuRate Primarily for residential build<strong>in</strong>gs The national benchmark software Provides house <strong>the</strong>rmal energy rat<strong>in</strong>gs Second-generation software product (AustralianBuild<strong>in</strong>g Codes Board Protocol for House <strong>Energy</strong>Rat<strong>in</strong>g Software Version 2006.1 is suitable forassess<strong>in</strong>g second generation software)BERSPro Primarily for residential build<strong>in</strong>gs Simulates and analyzes <strong>the</strong> <strong>the</strong>rmal performance ofhouses <strong>in</strong> Australia Second-generation software product Meets <strong>the</strong> Australian Build<strong>in</strong>g Codes Board’s Protocolfor House <strong>Energy</strong> Rat<strong>in</strong>g Software Version 2006.1FirstRate 5 For houses Integrates AccuRate calculation eng<strong>in</strong>eBeaver/ESP, IES Apache, TAS, ICE, TRACE 700, Carrier67 The Australian Build<strong>in</strong>g Code Board develops detailed protocols for <strong>the</strong> software called House <strong>Energy</strong> Rat<strong>in</strong>g Software and Build<strong>in</strong>g <strong>Energy</strong> Rat<strong>in</strong>g Software(http://www.abcb.gov.au/go/whatweredo<strong>in</strong>g/workprogram/projectsae/energy/eesoftware). Software developers self-verify whe<strong>the</strong>r <strong>the</strong>ir software meets <strong>the</strong>protocol us<strong>in</strong>g <strong>the</strong> protocol’s verification procedures. Software developers are not required to register <strong>the</strong>ir software with <strong>the</strong> Australian Build<strong>in</strong>g Code Board.68 For more on <strong>the</strong> software used <strong>in</strong> Australia, please seehttp://www.dip.qld.gov.au/docs/plann<strong>in</strong>gdocs/corporate/publications/build<strong>in</strong>g_codes/newsflash/2007/<strong>New</strong>sFlash262.pdf.82


AUSBCA 2007,cont<strong>in</strong>uedCAN 69MNECB1997SoftwareMethodologyDescribed <strong>in</strong>CodesYes (referred toano<strong>the</strong>rdocument) 70Exist<strong>in</strong>gSoftwareEE4,EE4 Code 71 ,BILTRADfree of chargeAccessibilitySoftware provided byCanmetENERGY with<strong>in</strong>Natural Resources Canada;accessible on <strong>the</strong> <strong>in</strong>ternetfree of chargeDescriptionE20-II, eQUEST, VisualDOE, <strong>Energy</strong>Plus For Class 3, 5, 6, 7, 8 and 9 build<strong>in</strong>gs (mostly nonresidential) Meets <strong>the</strong> Australian Build<strong>in</strong>g Codes Board’s Protocolfor Build<strong>in</strong>g <strong>Energy</strong> Analysis Software Version 2006.1 eQUEST, VisualDOE and <strong>Energy</strong>Plus are mostlysimulation programsEE4 Applies all of Natural Resources Canada’s validationof new build<strong>in</strong>g design rules to confirm that a design isat least 25% more energy efficient than if everyelement of <strong>the</strong> build<strong>in</strong>g envelope, light<strong>in</strong>g, HVAC andservice water systems were constructed to meetMNECB 1997 requirements. Uses a performance path approachEE4 Code Aligns strictly with MNECB 72 Compares proposed build<strong>in</strong>g design with build<strong>in</strong>g ofsimilar reference design built strictly to MNECB level Reports differences <strong>in</strong> energy performance for HVAC,envelope, light<strong>in</strong>g and service hot water Uses a performance path approach69 For more <strong>in</strong>formation, please see http://canmetenergy-canmetenergie.nrcan-rncan.gc.ca/eng/software_tools.html.70 “Trade-off Compliance for Build<strong>in</strong>gs: Specifications for Calculation Procedures for Demonstrat<strong>in</strong>g Compliance to <strong>the</strong> MNECB” published by CanadianCommission on Build<strong>in</strong>g and Fire Codes.71 EE4 and EE4 Code are be<strong>in</strong>g replaced with software based on eQuest.72 In contrast to EE4 Code, EE4 credits some efficiency measures (e.g., controls) that were not <strong>in</strong>cluded <strong>in</strong> <strong>the</strong> code.83


CANMNECB1997,cont<strong>in</strong>uedSoftwareMethodologyDescribed <strong>in</strong>CodesExist<strong>in</strong>gSoftwareAccessibilityDescriptionBILTRAD Compares <strong>the</strong> energy efficiency of your envelopedesign to <strong>the</strong> prescriptive requirements outl<strong>in</strong>ed <strong>in</strong>MNECB Uses a trade-off approachCAN 73MNECH1997Yes (referred toano<strong>the</strong>rdocument) 74HOUSTRADand HOT2®ECSoftware provided byCanmetENERGY with<strong>in</strong>Natural Resources Canada;accessible on <strong>the</strong> <strong>in</strong>ternetfree of charge (NaturalResources Canada, 2009)HOUSTRAD Verifies house envelope energy code compliancethrough <strong>the</strong> trade-off path: w<strong>in</strong>dows or walls of <strong>the</strong>house do not follow prescriptive requirements butoverall annual energy use is equal to or better than <strong>the</strong>reference houseHOT2®EC For build<strong>in</strong>g designs that do not meet prescriptive ortrade-off paths; uses a performance path approach Requires <strong>the</strong> user to demonstrate that <strong>the</strong> build<strong>in</strong>g, asdesigned, will not have a calculated energyconsumption that is greater than it would have been if<strong>the</strong> build<strong>in</strong>g was designed to meet <strong>the</strong> prescriptiverequirements Requires a computer analysis to verify that <strong>the</strong>build<strong>in</strong>g will be as energy efficient as <strong>the</strong> same housedesigned us<strong>in</strong>g <strong>the</strong> Prescriptive compliancerequirements73 For more <strong>in</strong>formation, please see http://canmetenergy-canmetenergie.nrcan-rncan.gc.ca/eng/software_tools.html.74 “Trade-off Compliance for Houses: Specifications for Calculation Procedures for Demonstrat<strong>in</strong>g Compliance to <strong>the</strong> MNECH” published by CanadianCommission on Build<strong>in</strong>g and Fire Codes.84


CHNCHN,cont<strong>in</strong>uedINDECBCJAPKORUSAIECC 2006SoftwareMethodologyDescribed <strong>in</strong>CodesNoNoNoNoYesExist<strong>in</strong>gSoftwareCommercialsoftwareAccessibilityThere are numerouscommercial softwarepackages on <strong>the</strong> market.DescriptionThe government does not promote any given software package,although it has noted that <strong>the</strong> exist<strong>in</strong>g software can produce<strong>in</strong>consistent results.No N.A. The code is currently voluntary. Compliance software mayeventually be part of a package to <strong>in</strong>troduce mandatoryenforcement.CASBEE 75No, but simpleweb-basedcalculationsheet availableREScheckREM/RateHome <strong>Energy</strong>Initiated with <strong>the</strong> support of<strong>the</strong> Hous<strong>in</strong>g Bureau,M<strong>in</strong>istry of Land,Infrastructure, Transportand Tourism <strong>in</strong> April 2001.Software available fordownload on <strong>the</strong> <strong>in</strong>ternetfree of charge.N.A.Ma<strong>in</strong>ta<strong>in</strong>ed by <strong>the</strong> U.S.Department of <strong>Energy</strong>’sPacific Northwest NationalLaboratory; free of chargeDeveloped by a privatefirm; licensed annually to A voluntary program that supports build<strong>in</strong>g energyefficiency and implementation of <strong>the</strong> build<strong>in</strong>g energy code Includes several software tools available for download,<strong>in</strong>clud<strong>in</strong>g CASBEE for:o <strong>New</strong> Constructiono Exist<strong>in</strong>g Build<strong>in</strong>go Renovationo Home (Detached House)South Korea’s build<strong>in</strong>g energy code is based on a 60-po<strong>in</strong>tchecklist. This approach means that compliance software maynot be as critical <strong>in</strong> handl<strong>in</strong>g build<strong>in</strong>g energy performance. Purpose is to simplify and clarify code compliance withIECC, Model <strong>Energy</strong> Code and several state codes Offers both trade-off and prescriptive approaches todemonstrate compliance Residential code compliance and rat<strong>in</strong>g software developedspecifically for Home <strong>Energy</strong> Rat<strong>in</strong>g System providers75 For more <strong>in</strong>formation, please see http://www.ibec.or.jp/CASBEE/english/<strong>in</strong>dex.htm.85


USAIECC 2006,cont<strong>in</strong>uedSoftwareMethodologyDescribed <strong>in</strong>CodesExist<strong>in</strong>gSoftwareRat<strong>in</strong>gSoftware 76AccessibilityHome <strong>Energy</strong> Rat<strong>in</strong>gSystem providers.Description Calculates heat<strong>in</strong>g, cool<strong>in</strong>g, hot water, light<strong>in</strong>g, andappliance energy loads, consumption and costs for new(and exist<strong>in</strong>g) s<strong>in</strong>gle and multi-family homes. States and cities that adopt IECC 2006 can choose to use<strong>the</strong>se toolsUSAIECC 2006,cont<strong>in</strong>uedUSAASHRAE90.1-2007Yes<strong>Energy</strong>GaugeUSACOMcheckDeveloped by <strong>the</strong> FloridaSolar <strong>Energy</strong> Center, apartner <strong>in</strong> <strong>the</strong> U.S.Environmental ProtectionAgency <strong>Energy</strong> Star®Homes program, a partner<strong>in</strong> <strong>the</strong> U.S. Department of<strong>Energy</strong> Build<strong>in</strong>g Americaprogram. The software isavailable for purchase on<strong>the</strong> <strong>in</strong>ternet.Ma<strong>in</strong>ta<strong>in</strong>ed by <strong>the</strong> U.S.Department of <strong>Energy</strong>’sPacific Northwest NationalLaboratory; available freeof-chargeon <strong>the</strong> <strong>in</strong>ternetComplies with all requirements of <strong>the</strong> IECC for energy codecompliance calculations and report<strong>in</strong>g and with all nationalaccreditation procedures and technical guidel<strong>in</strong>es for Home<strong>Energy</strong> Rat<strong>in</strong>g Systems, <strong>in</strong>clud<strong>in</strong>g <strong>the</strong> “HERS BESTEST”procedures. Offers both trade-off and Prescriptive approaches todemonstrate compliance For <strong>the</strong> prescriptive approach, <strong>the</strong> user can use <strong>the</strong> webbasedapplication “COMcheck Prescriptive PackageGenerator” to generate his/her own code-compliant<strong>in</strong>sulation and w<strong>in</strong>dow packages <strong>in</strong>stead of follow<strong>in</strong>g pre-76 For more <strong>in</strong>formation, please see http://www.archenergy.com/products/rem/rem_rate/.86


SoftwareMethodologyDescribed <strong>in</strong>CodesExist<strong>in</strong>gSoftwareAccessibilityDescriptiondef<strong>in</strong>ed prescriptive packagesUSAENVSTD andLTGSTD 77Ma<strong>in</strong>ta<strong>in</strong>ed by <strong>the</strong> U.S.Department of <strong>Energy</strong>’s Allows user to make compliance calculations to determ<strong>in</strong>ewhe<strong>the</strong>r a build<strong>in</strong>g design meets envelope and light<strong>in</strong>gASHRAEPacific Northwest National system performance requirements of DOE’s Interim90.7-2007Laboratory; available freeof-chargeon <strong>the</strong> <strong>in</strong>ternet <strong>New</strong> Commercial and Multifamily High-Rise<strong>Energy</strong> Conservation Performance Standards forCont<strong>in</strong>uedResidential Build<strong>in</strong>gs Provides <strong>the</strong> envelope trade-off option <strong>in</strong> Standard90.1-2007 and comes with a Users Manual.Note: Calculation procedures may <strong>in</strong>clude standard reference design, <strong>in</strong>put values or o<strong>the</strong>r factors. The list of software <strong>in</strong> <strong>the</strong> column “exist<strong>in</strong>g software”provides an overview of some of <strong>the</strong> ma<strong>in</strong> software packages available; <strong>in</strong> some countries, <strong>the</strong>re are private software packages, not all of which are listed here.Appendix D – Tra<strong>in</strong><strong>in</strong>g and Public InformationAUSBCA 2007Tra<strong>in</strong><strong>in</strong>gAustralian Institute of Refrigeration, AirCondition<strong>in</strong>g & Heat<strong>in</strong>g Nationally recognized tra<strong>in</strong><strong>in</strong>g on BCA Courses <strong>in</strong>clude: Apply <strong>the</strong> provisions of<strong>the</strong> BCA and <strong>the</strong> relevant state and territoryActs and Regulations; Ensure ComplianceWith Mechanical Services Codes, Standardsand Rat<strong>in</strong>g Schemes to HVAC SystemsDesign; F<strong>in</strong>d Your Way With Section J;Carbon Detectives – Operation: <strong>Energy</strong>Audit; BCA for HVAC Practitioners – WhatPublic InformationThe Australian Build<strong>in</strong>g Codes Board keeps <strong>the</strong> public updated onavailable courses on BCA with “BCA Tra<strong>in</strong><strong>in</strong>g Gateway” (ABCB,2009). By access<strong>in</strong>g <strong>the</strong> BCA Tra<strong>in</strong><strong>in</strong>g Gateway website ortelephon<strong>in</strong>g, it is possible to f<strong>in</strong>d out which university or(technical and fur<strong>the</strong>r education) TAFE is conduct<strong>in</strong>g tra<strong>in</strong><strong>in</strong>g on<strong>the</strong> BCA or when <strong>the</strong> next <strong>in</strong>dustry association sem<strong>in</strong>ar will beheld.The Australian Build<strong>in</strong>g Codes Board is also currently develop<strong>in</strong>ga range of tra<strong>in</strong><strong>in</strong>g modules, called Resource Kits, to raiseawareness of BCA provisions with<strong>in</strong> <strong>the</strong> Australian build<strong>in</strong>g and77 For more <strong>in</strong>formation, please see http://apps1.eere.energy.gov/build<strong>in</strong>gs/tools_directory/software.cfm/ID=134/pagename=alpha_list.87


AUSBCA 2007,cont<strong>in</strong>uedCANMNECB1997CANMNECH1997CHNTra<strong>in</strong><strong>in</strong>gAre You Miss<strong>in</strong>g?The Australian M<strong>in</strong>isterial Council on <strong>Energy</strong>also sponsors tra<strong>in</strong><strong>in</strong>g related to <strong>the</strong> BCA, forexample, on energy rat<strong>in</strong>g software and energyrat<strong>in</strong>g.The Office of <strong>Energy</strong> <strong>Efficiency</strong> and itsstakeholder organizations offer tra<strong>in</strong><strong>in</strong>g on howto <strong>in</strong>terpret and apply MNECB.The Ontario M<strong>in</strong>istry of Municipal Affairs andHous<strong>in</strong>g and its counterparts <strong>in</strong> o<strong>the</strong>r prov<strong>in</strong>ceshave hosted tra<strong>in</strong><strong>in</strong>g sem<strong>in</strong>ars on <strong>the</strong> build<strong>in</strong>genergy code and energy efficiency <strong>in</strong> houses.There are also specialized courses and onl<strong>in</strong>emodules on issues like HVAC, build<strong>in</strong>genvelope and code updates. 78MOHURD and CABR have organizednumerous tra<strong>in</strong><strong>in</strong>g activities dur<strong>in</strong>g and after <strong>the</strong>release of build<strong>in</strong>g energy standards.Ch<strong>in</strong>a has also cooperated with o<strong>the</strong>r countrieson tra<strong>in</strong><strong>in</strong>g courses related to build<strong>in</strong>g energycodes. For example, <strong>the</strong> U.S. Department ofState is sponsor<strong>in</strong>g work by CABR and <strong>the</strong>Pacific Northwest National Laboratory toenhance code implementation through tra<strong>in</strong><strong>in</strong>g<strong>in</strong> two Ch<strong>in</strong>ese cities.The World Bank has also sponsored tra<strong>in</strong><strong>in</strong>g onPublic Informationconstruction sector. The Resource Kits are <strong>in</strong>tended to provideupdated and consistent <strong>in</strong>formation on BCA and are also designedto assist with tra<strong>in</strong><strong>in</strong>g needs.Natural Resources Council posts tra<strong>in</strong><strong>in</strong>g materials and workshopsfor new and exist<strong>in</strong>g build<strong>in</strong>gs on its website(http://oee.nrcan.gc.ca/)O<strong>the</strong>r <strong>in</strong>formation sources: Prov<strong>in</strong>cial and municipal governments Canadian Home Builders Association Canadian Association of Home & Property InspectionsThe MOHURD website (http://www.c<strong>in</strong>.gov.cn/jnjp/) providesupdates on policy developments, regulations and <strong>in</strong>dustry news onbuild<strong>in</strong>g energy efficiency.Non-governmental websites (e.g., www.ch<strong>in</strong>a5e.com) also providepolicy updates and local news related to build<strong>in</strong>g energyefficiency.Local government websites also provide code-related <strong>in</strong>formation,such as notices for meet<strong>in</strong>gs, regulatory changes and permitdocuments.78 For more <strong>in</strong>formation, please see <strong>the</strong> Ontario M<strong>in</strong>istry of Municipal Affairs and Hous<strong>in</strong>g website (www.obc.mah.gov.on.ca/site4.aspx) and <strong>the</strong> BritishColumbia government website (www.bcbuild<strong>in</strong>g<strong>in</strong>fo.com/display_topic.php?division_id=2&topic_title_id=38&topic_id=165).88


CHN,cont<strong>in</strong>uedINDECBCJAPTra<strong>in</strong><strong>in</strong>gbuild<strong>in</strong>g code enforcement as part of an energyefficiency project <strong>in</strong> Tianj<strong>in</strong>, <strong>in</strong>volv<strong>in</strong>g WhiteBox Technologies (a United States firm) ando<strong>the</strong>rs.The Bureau of <strong>Energy</strong> <strong>Efficiency</strong> is consider<strong>in</strong>gdevelop<strong>in</strong>g code compliance software andtra<strong>in</strong><strong>in</strong>g programs for code <strong>in</strong>spectors andenforcers. Accord<strong>in</strong>g to <strong>the</strong> Bureau of <strong>Energy</strong><strong>Efficiency</strong>, from 2004-2008, six nationalcertification exam<strong>in</strong>ations have beensuccessfully conducted <strong>in</strong> 23 centers all over <strong>the</strong>country (Chakarvarti, 2008).The USAID-sponsored ECO-III project isdevelop<strong>in</strong>g tra<strong>in</strong><strong>in</strong>g modules. It has alsodeveloped courses on build<strong>in</strong>g energysimulation.The India Green Build<strong>in</strong>gs Council is alsoconduct<strong>in</strong>g tra<strong>in</strong><strong>in</strong>g workshops on energymanagement and low-cost energy efficiency <strong>in</strong>exist<strong>in</strong>g build<strong>in</strong>gs.Institute for Build<strong>in</strong>g Environment and <strong>Energy</strong>Conservation (http://www.ibec.or.jp/) Holds tra<strong>in</strong><strong>in</strong>g sem<strong>in</strong>ars to supportimplementation of <strong>the</strong> <strong>Energy</strong>Conservation Law Includes tra<strong>in</strong><strong>in</strong>g on: build<strong>in</strong>g design,construction techniques, <strong>in</strong>sulation andperimeter annual load/quantity ofenergy consumed calculation, which actPublic InformationThe ECO-III project is develop<strong>in</strong>g an implementation guide to <strong>the</strong>ECBCThe Indo-German <strong>Energy</strong> Program, a collaboration between <strong>the</strong>Government of India and Germany’s M<strong>in</strong>istry of EconomicCooperation and Development, also contributes to <strong>the</strong>implementation of <strong>the</strong> <strong>Energy</strong> Conservation Act of India (2001).The program hosts a website called <strong>Energy</strong> Manager Tra<strong>in</strong><strong>in</strong>g(www.energymanagertra<strong>in</strong><strong>in</strong>g.com).The website <strong>in</strong>cludes <strong>in</strong>formation on learn<strong>in</strong>g material on energymanagement; case studies/best practices that were undertaken by<strong>in</strong>dustry; energy-efficient equipment with <strong>the</strong>ir specifications and<strong>in</strong>formation on equipment manufacturers/vendor/suppliers; detailsof manufacturers associations/energy audit firms; energy auditguidel<strong>in</strong>es; energy audit <strong>in</strong>struments; useful websites where<strong>in</strong>formation on energy management is available; and energyrelated events (sem<strong>in</strong>ars/tra<strong>in</strong><strong>in</strong>g programs/conferences/taskforces, etc.).Under <strong>the</strong> Susta<strong>in</strong>able Build<strong>in</strong>g Report<strong>in</strong>g System, many citiesprovide tools and <strong>in</strong>formation to help improve <strong>the</strong> energyefficiency of new build<strong>in</strong>gs.Some cities also publish summaries of all new build<strong>in</strong>g energysav<strong>in</strong>g plans and some encourage energy efficiency by allow<strong>in</strong>gbuilders to build taller or larger build<strong>in</strong>gs than would be allowedo<strong>the</strong>rwise if <strong>the</strong> build<strong>in</strong>g designs rank high on energy efficiency.89


JAP,Cont<strong>in</strong>uedKORUSAASHRAE90.1-2007Tra<strong>in</strong><strong>in</strong>gas <strong>the</strong> support for enforcement of <strong>the</strong><strong>Energy</strong> Conservation Law In an effort to diffuse <strong>the</strong> changes <strong>in</strong> <strong>the</strong>latest amendment of <strong>the</strong> <strong>Energy</strong>Conservation Law, about 100 tra<strong>in</strong><strong>in</strong>gsessions on <strong>the</strong> amended <strong>Energy</strong>Conservation Law were held all aroundJapan <strong>in</strong> April 2009 and similar sessionswill cont<strong>in</strong>ue to be held <strong>in</strong> <strong>the</strong> future.Accord<strong>in</strong>g to law, KEMCO holds tra<strong>in</strong><strong>in</strong>gprograms for energy managers and operators ofheat-us<strong>in</strong>g equipment and facilities <strong>in</strong> order toupdate <strong>the</strong>ir skills, <strong>in</strong> addition to enhanc<strong>in</strong>g <strong>the</strong>irsafety control proficiency. The Korean <strong>Energy</strong>Management Corporation offers various k<strong>in</strong>dsof tra<strong>in</strong><strong>in</strong>g and educational courses.DOE, through <strong>the</strong> Pacific Northwest NationalLaboratory, offers a range of <strong>in</strong>-person andweb-based tra<strong>in</strong><strong>in</strong>g courses on both ASHRAEand IECC. DOE also offers energy codeassistance through its Ask an Expert program.ASHRAE offers professional developmentsem<strong>in</strong>ars (one day): Comply<strong>in</strong>g with Standard 90.1-2007Exceed<strong>in</strong>g <strong>the</strong> Requirements ofStandard 90.1-2007ASHRAE also offers Short Courses (half-day): Comply<strong>in</strong>g with Standard 90.1-2007:HVAC/Mechanical Exceed<strong>in</strong>g Standard 90.1-2007Public InformationO<strong>the</strong>r cities provide construction subsidies or low-<strong>in</strong>terest loansfor residential build<strong>in</strong>gs that rank high <strong>in</strong> energy efficiency.Rank<strong>in</strong>gs are determ<strong>in</strong>ed us<strong>in</strong>g <strong>the</strong> software CASBEE (see sectionon Compliance Software and O<strong>the</strong>r Tools <strong>in</strong> this report).The Institute for Build<strong>in</strong>g Environment and <strong>Energy</strong> Conservationalso publishes detailed guidebooks on <strong>the</strong> energy efficiencystandards.The code references a comprehensive handbook entitled, “Manualfor ‘Build<strong>in</strong>g Design Criteria for <strong>Energy</strong> Sav<strong>in</strong>g,’ prepared by <strong>the</strong>Korean <strong>Energy</strong> Management Corporation and approved by <strong>the</strong>M<strong>in</strong>istry of Land, Transportation and Maritime Affairs.S<strong>in</strong>ce <strong>the</strong> early 1990s, DOE has been develop<strong>in</strong>g and provid<strong>in</strong>gfree educational and tra<strong>in</strong><strong>in</strong>g materials and software <strong>in</strong> support of<strong>the</strong> most recent IECC energy codes and ASHRAE 90.1. Thesematerials are posted on a frequently updated website:www.energycodes.gov. This website also updates news and eventsrelated to build<strong>in</strong>g energy codes <strong>in</strong> its Build<strong>in</strong>g <strong>Energy</strong> CodeResource Center.O<strong>the</strong>r Information Source:American Society of Home Inspectors90


USAASHRAE90.1-2007USAIECC 2006Tra<strong>in</strong><strong>in</strong>gASHRAE e-learn<strong>in</strong>g Web-based tra<strong>in</strong><strong>in</strong>g Includes HVAC systems, Fundamentalsof ASHRAE Standard 90.1, 90.1 forArchitects, Fundamentals of Susta<strong>in</strong>ableBuild<strong>in</strong>gsSee above for DOE-sponsored tra<strong>in</strong><strong>in</strong>g and<strong>in</strong>formation. In addition, IECC holds severaltra<strong>in</strong><strong>in</strong>g <strong>in</strong>stitutes with courses such as: Residential Build<strong>in</strong>g Inspections(Foundation <strong>in</strong>spection, Floor andceil<strong>in</strong>g fram<strong>in</strong>g <strong>in</strong>spection) Residential Mechanical Inspections (airduct <strong>in</strong>spections)Public Information91


AcronymsAPPAS/NZSASHRAEAUSBATFBCABDCESCANCCREUBCCREUHCHNDCGREUHDOEECBCECO-IIIGDPHSCWHSWWHVACIECCINDISOJAPKORAsia-Pacific Partnership on Clean Development andClimateAustralian-<strong>New</strong> Zealand standardsAmerican Society of Heat<strong>in</strong>g, Refrigerat<strong>in</strong>g and AirCondition<strong>in</strong>g Eng<strong>in</strong>eersAustraliaBuild<strong>in</strong>gs and Appliances Task Force (of <strong>the</strong> APP)Build<strong>in</strong>g Code of AustraliaBuild<strong>in</strong>g Design Criteria for <strong>Energy</strong> Sav<strong>in</strong>g (South Korea)CanadaCriteria for Clients on <strong>the</strong> Rationalization of <strong>Energy</strong> Usefor Build<strong>in</strong>gs (Japan)Criteria for Clients on <strong>the</strong> Rationalization of <strong>Energy</strong> Usefor Houses (Japan)Ch<strong>in</strong>aDesign and Construction Guidel<strong>in</strong>es on <strong>the</strong> Rationalizationof <strong>Energy</strong> Use for Houses (Japan)U.S. Department of <strong>Energy</strong><strong>Energy</strong> Conservation Build<strong>in</strong>g Code (India)<strong>Energy</strong> Conservation and Commercialization, Phase-IIIGross domestic productHot summer and cold w<strong>in</strong>ter (referred to <strong>in</strong> Ch<strong>in</strong>a’s DesignStandard for <strong>Energy</strong> <strong>Efficiency</strong> of Residential Build<strong>in</strong>gs <strong>in</strong>Hot Summer and Cold W<strong>in</strong>ter Zone 2001)Hot summer and warm w<strong>in</strong>ter (referred to <strong>in</strong> Ch<strong>in</strong>a’sDesign Standard for <strong>Energy</strong> <strong>Efficiency</strong> of ResidentialBuild<strong>in</strong>gs <strong>in</strong> Hot Summer and Warm W<strong>in</strong>ter Zone 2003)Heat<strong>in</strong>g, ventilation and air condition<strong>in</strong>gInternational <strong>Energy</strong> Conservation CodeIndiaInternational Standardization OrganizationJapanSouth Korea92


lxMECMJ/m 2MNECBMNECHPPPRBFCOSHGCUSAWWRlum<strong>in</strong>ance (<strong>in</strong>ternational standard unit)Model <strong>Energy</strong> Code (United States)Megajoule per square meterModel National <strong>Energy</strong> Code of Canada for Build<strong>in</strong>gsModel National <strong>Energy</strong> Code of Canada for HousesPurchas<strong>in</strong>g power parityRules for Build<strong>in</strong>g Facility Criteria & O<strong>the</strong>rwise (SouthKorea)Solar heat ga<strong>in</strong> coefficientUnited StatesW<strong>in</strong>dow-to-wall ratio93


ReferencesABCB (Australian Build<strong>in</strong>gs Code Board). 2007. Build<strong>in</strong>g Code of Australia: Class 2 toClass 9 Build<strong>in</strong>gs, Hous<strong>in</strong>g Provisions, Volume One.ABCB (Australian Build<strong>in</strong>gs Code Board). 2007. Build<strong>in</strong>g Code of Australia: Class 1 toClass 10 Build<strong>in</strong>gs, Volume Two.ABCB (Australian Build<strong>in</strong>gs Code Board). 2007. Guide to BCA 2007: Class 2 to Class 9Build<strong>in</strong>gs.ABCB (Australian Build<strong>in</strong>g Codes Board). 2008. <strong>Energy</strong> <strong>Efficiency</strong> General Information,http://www.abcb.gov.au/go/whatweredo<strong>in</strong>g/workprogram/projectsae/energy/eegeneral.ABCB (Australian Build<strong>in</strong>g Codes Board). 2009. BCA Tra<strong>in</strong><strong>in</strong>g Gateway,http://www.abcb.gov.au/go/tra<strong>in</strong><strong>in</strong>g/gateway.ABCC (Associated Air Balance Council). 2009. Organization and History,http://www.aabc.com/about/.Ahn, Mi-Chung. 2008. The <strong>Energy</strong> Conservation Programme of <strong>the</strong> Republic of Korea.UNESCAP 1998,http://www.unescap.org/esd/energy/publications/compend/ceccpart2chapter3.htm#2%20<strong>Energy</strong>.APEC <strong>Energy</strong> Work<strong>in</strong>g Group. 2006. F<strong>in</strong>ancial Measures to Encourage <strong>the</strong> Uptake of<strong>Energy</strong> Efficient technologies/Equipment <strong>in</strong> <strong>the</strong> Industrial and Commercial Sectors:Consolidated Report for EWG31. S<strong>in</strong>gapore: May 17-18.ASHRAE (American Society of Heat<strong>in</strong>g, Refrigerat<strong>in</strong>g and Air-Condition<strong>in</strong>g Eng<strong>in</strong>eers).2007. ASHRAE STANDARD: <strong>Energy</strong> Standard for Build<strong>in</strong>gs Except Low-RiseResidential Build<strong>in</strong>gs. Atlanta GA: ANSI/ASHRAE/IESNA Standard 90.1-2007.Australian Government. 2009. Secur<strong>in</strong>g Australia’s <strong>Energy</strong> Future 2004,http://www.efa.com.au/Library/Cth<strong>Energy</strong>WhitePaper.pdf.Australian Institute of Build<strong>in</strong>g. 2009. BCA - Build<strong>in</strong>g Code of Australia 2004,http://www.aib.org.au/build<strong>in</strong>gcodes/bca.htm.Bartlett, R., M.A. Halverson and D.L. Shankle. 2003. Understand<strong>in</strong>g Build<strong>in</strong>g <strong>Energy</strong>Codes and Standards. Pacific Northwest National Laboratory,http://www.energycodes.gov/implement/pdfs/codes101.pdf.Board of Audit and Inspection of Korea (BAI). 2006. Audit Results and Request forAction: Actual Progress Regard<strong>in</strong>g <strong>Energy</strong> Development and Rational <strong>Energy</strong> Use.Special Program Audit Report, Seoul: August.Burby, R.J., P.J. May, E. Malizia and J. Lev<strong>in</strong>e. 2000. Code Enforcement Burdens andCentral City Decl<strong>in</strong>e. Journal of <strong>the</strong> American Plann<strong>in</strong>g Association 66: 143-161.Bureau of <strong>Energy</strong> <strong>Efficiency</strong>. 2007. <strong>Energy</strong> Conservation Build<strong>in</strong>g Code 2007.Cab<strong>in</strong>et Office of Japan. 2006. 41. Hous<strong>in</strong>g Quality Assurance Law,http://www5.cao.go.jp/otodb/english/houseido/hou/lh_9999-71.html.94


Chakarvarti, K.K. 2008. <strong>Energy</strong> Conservation Act & ECBC - An Overview. <strong>New</strong> Delhi:Bureau of <strong>Energy</strong> <strong>Efficiency</strong>, September 25, slides.Civic Centre (City of Prospect). 2008. Prospect <strong>Energy</strong> <strong>Efficiency</strong> Incentive Scheme,http://www.prospect.sa.gov.au/webdata/resources/files/EEISversion_for_web_pdf.pdf.Construction Professional Standard of People’s Republic of Ch<strong>in</strong>a. 2001. DesignStandard for <strong>Energy</strong> <strong>Efficiency</strong> of Build<strong>in</strong>gs <strong>in</strong> Hot Summer and Cold W<strong>in</strong>ter Zone, JGJ134-2001.U.S. Congress. 1975. <strong>Energy</strong> Policy and Conservation Act of 1975,http://www.earthscape.org/p1/ES15243/EPCA_ToC.html.DOE (U.S. Department of <strong>Energy</strong>). 2002. Inspect<strong>in</strong>g for <strong>the</strong> Residential Provisions of <strong>the</strong>IECC. Whittier, CA: International Conference of Build<strong>in</strong>g Officials.DOE (U.S. Department of <strong>Energy</strong>). 2008a. Status of State <strong>Energy</strong> Codes. U.S.Department of <strong>Energy</strong> 2008,http://www.energycodes.gov/implement/state_codes/<strong>in</strong>dex.stm.DOE (U.S. Department of <strong>Energy</strong>). 2008b. F<strong>in</strong>ancial Opportunities: Tax Incentives forCommercial Build<strong>in</strong>gs, http://www1.eere.energy.gov/build<strong>in</strong>gs/tax_commercial.html.DOE (U.S. Department of <strong>Energy</strong>). 2009. F<strong>in</strong>ancial Opportunities: Tax Incentives forResidential Build<strong>in</strong>gs, http://www1.eere.energy.gov/build<strong>in</strong>gs/tax_residential.html.EIA (<strong>Energy</strong> Information Adm<strong>in</strong>istration). 2006. 2003 CBECS Detailed Tables,www.eia.doe.gov/emeu/cbecs/cbecs2003/detailed_tables_2003/detailed_tables_2003.htm.EIA (<strong>Energy</strong> Information Adm<strong>in</strong>istration). 2008a. World Carbon Dioxide Emissionsfrom <strong>the</strong> Consumption and Flar<strong>in</strong>g of Fossil Fuels,www.eia.doe.gov/emeu/<strong>in</strong>ternational/carbondioxide.html.EIA (<strong>Energy</strong> Information Adm<strong>in</strong>istration). 2008b. Residential <strong>Energy</strong> ConsumptionSurvey 2005 - Detailed Tables,www.eia.doe.gov/emeu/recs/recs2005/hc2005_tables/detailed_tables2005.html.ELI (Efficient Light<strong>in</strong>g Initiative). 2005. What is CSC,http://www.efficientlight<strong>in</strong>g.net/<strong>in</strong>dex.php?option=com_content&task=view&id=38&Itemid=1.Foster, R. 2004. Australia: Manag<strong>in</strong>g Test<strong>in</strong>g Laboratories <strong>in</strong> Support of a Standards andLabell<strong>in</strong>g Programme. Bangalore: Australian Greenhouse Office of <strong>the</strong> AustralianGovernment, October, slides.Hong, Wen, Madela<strong>in</strong>e Steller Chiang, Ruth A. Shapiro and Mark L. Clifford. 2007.Build<strong>in</strong>g <strong>Energy</strong> <strong>Efficiency</strong>: Why Green Build<strong>in</strong>gs Are Key to Asia’s Future. Edited by M.P. Laurenzi. Hong Kong: Asia Bus<strong>in</strong>ess Council.Huang, Joe and Joe Der<strong>in</strong>ger. 2008. <strong>Energy</strong> <strong>Efficiency</strong> Build<strong>in</strong>g Standards <strong>in</strong> Ch<strong>in</strong>a,www.asiabus<strong>in</strong>esscouncil.org/docs/BEE/papers/BEE_Policy_Ch<strong>in</strong>a.pdf.IEA (International <strong>Energy</strong> Agency). 2005. <strong>Energy</strong> Policies of IEA Countries - Australia(2005 Review). Paris: IEA Publications.95


IEA (International <strong>Energy</strong> Agency). 2006. Korea Hosts ECBCS Technical Day: <strong>Energy</strong><strong>Efficiency</strong> for Better Build<strong>in</strong>g Environments. <strong>Energy</strong> Conservation <strong>in</strong> Build<strong>in</strong>gs andCommunity Systems Programme, <strong>New</strong>s 43,http://www.ecbcs.org/newsletters/ECBCS_0606_webversion.pdf.IEA (International <strong>Energy</strong> Agency). 2007. <strong>Energy</strong> Balances of OECD Countries. Paris:OECD.IEA (International <strong>Energy</strong> Agency). 2008a. Basic Program for Hous<strong>in</strong>g: <strong>Energy</strong><strong>Efficiency</strong> Standards 2008,http://www.iea.org/textbase/pm/?mode=pm&id=2600&action=detail.IEA (International <strong>Energy</strong> Agency). 2008b. India <strong>Energy</strong> <strong>Efficiency</strong> Policies andMeasures: <strong>Energy</strong> Conservation Build<strong>in</strong>g Code 2008,http://www.iea.org/textbase/pm/?mode=pm&id=4162&action=detail.IEA (International <strong>Energy</strong> Agency). 2008c. Law Concern<strong>in</strong>g <strong>the</strong> Rational Use of <strong>Energy</strong>(1979 <strong>Energy</strong> Conservation Law),http://www.iea.org/textbase/pm/?mode=pm&id=4139&action=detail.IEA (International <strong>Energy</strong> Agency). 2008d. Law Concern<strong>in</strong>g <strong>the</strong> Rational Use of <strong>Energy</strong>(1993 Revised <strong>Energy</strong> Conservation Law),http://www.iea.org/textbase/pm/?mode=pm&id=4138&action=detail.IEA (International <strong>Energy</strong> Agency). 2008e. Law Concern<strong>in</strong>g <strong>the</strong> Rational Use of <strong>Energy</strong>(2002 Revised <strong>Energy</strong> Conservation Law),http://www.iea.org/textbase/pm/?mode=pm&id=911&action=detail.IEA (International <strong>Energy</strong> Agency). 2008f. Law Concern<strong>in</strong>g <strong>the</strong> Rational Use of <strong>Energy</strong>(2005 Revised <strong>Energy</strong> Conservation Law),http://www.iea.org/Textbase/pm/?mode=pm&id=2606&action=detail.IEA-DSM (International <strong>Energy</strong> Agency Demand Side Management Program). No date.<strong>Energy</strong> <strong>Efficiency</strong> programs <strong>in</strong> Korea,www.ieadsm.org/Files/Exco%20File%20Library/Country%20Publications/programs.doc.IMF (International Monetary Fund). 2008. World Economic Outlook Database,http://www.imf.org/external/pubs/ft/weo/2008/01/weodata/<strong>in</strong>dex.aspx.International Code Council. 2006. International <strong>Energy</strong> Conservation Code.Lang, Siwei. 2004. Progress <strong>in</strong> energy-efficiency standards for residential build<strong>in</strong>gs <strong>in</strong>Ch<strong>in</strong>a. <strong>Energy</strong> and Build<strong>in</strong>gs 36, no. 12 (December): 1191-1196.Lang, Siwei. 2005. <strong>Energy</strong> <strong>Efficiency</strong> Requirements for Cool<strong>in</strong>g and Heat<strong>in</strong>g Sources <strong>in</strong>GB50189-2005 Design Guide for <strong>Energy</strong> <strong>Efficiency</strong> <strong>in</strong> Public Build<strong>in</strong>gs. Ch<strong>in</strong>aConstruction Heat<strong>in</strong>g & Refrigeration 7.Lausten, Jens. 2008. <strong>Energy</strong> <strong>Efficiency</strong> Requirements <strong>in</strong> Build<strong>in</strong>g Codes, <strong>Energy</strong><strong>Efficiency</strong> Policies for <strong>New</strong> Build<strong>in</strong>gs. International <strong>Energy</strong> Agency, Paris.Lee, Seung-Eon. 2006. <strong>Energy</strong> <strong>Efficiency</strong> Build<strong>in</strong>g Standards <strong>in</strong> Korea. Work<strong>in</strong>g paper,Korean Institute of Construction Technology, Seoul.96


M<strong>in</strong>istry of Construction. 1999. Design and Construction Guidel<strong>in</strong>es on <strong>the</strong>Rationalization of <strong>Energy</strong> Use for Houses, Notice No. 998.M<strong>in</strong>istry of Hous<strong>in</strong>g and Urban-Rural Development. 1995. <strong>Energy</strong> Conservation DesignStandard for <strong>New</strong> Heat<strong>in</strong>g Residential Build<strong>in</strong>gs.M<strong>in</strong>istry of Hous<strong>in</strong>g and Urban-Rural Development. 2005. Design Standard for <strong>Energy</strong><strong>Efficiency</strong> of Public Build<strong>in</strong>gs.M<strong>in</strong>istry of Internal Affairs and Communications. 2008. Koteishisan no kakaku tou nogaiyou, Summary of Fixed Asset Tax Rolls (FY06) (Informal translation of title fromJapanese), www.soumu.go.jp/czaisei/czaisei_seido/pdf/ichiran08_5_02.pdf.M<strong>in</strong>istry of International Trade and Industry and M<strong>in</strong>istry of Construction. 1999. Criteriafor clients on <strong>the</strong> rationalization of energy use for build<strong>in</strong>gs, Notice No. 1.M<strong>in</strong>istry of International Trade and Industry and M<strong>in</strong>istry of Construction. 1999. Criteriafor clients on <strong>the</strong> rationalization of energy use for houses, Notice No. 2.M<strong>in</strong>istry of Land, Transport and Maritime Affairs (MLTM). 2008. Build<strong>in</strong>g DesignCriteria for <strong>Energy</strong> Sav<strong>in</strong>g. MLTM Notification No. 2008-652.M<strong>in</strong>istry of Land, Transport and Maritime Affairs (MLTM). 2008. Rules for Build<strong>in</strong>gFacility Criteria & O<strong>the</strong>rwise. MLTM Directive No. 2008-33.NAEWG (North American <strong>Energy</strong> Work<strong>in</strong>g Group). 2002. North American <strong>Energy</strong><strong>Efficiency</strong> Standards and Label<strong>in</strong>g. U.S. Department of <strong>Energy</strong>’s Office of <strong>Energy</strong><strong>Efficiency</strong> and Renewable <strong>Energy</strong>, December 19,http://www1.eere.energy.gov/build<strong>in</strong>gs/appliance_standards/pdfs/naewg_report.pdf.NATA (National Association of Test<strong>in</strong>g Authorities). About NATA,http://www.nata.asn.au/go/about-nata (accessed April 20, 2009).Natural Resources Canada. 2009. Tra<strong>in</strong><strong>in</strong>g and Workshops for <strong>New</strong> Build<strong>in</strong>gs,http://oee.nrcan.gc.ca/commercial/newbuild<strong>in</strong>gs/tra<strong>in</strong><strong>in</strong>g-workshops.cfm?attr=24.NCQDE (National Center for Quality Supervision and Test of Build<strong>in</strong>g Eng<strong>in</strong>eer<strong>in</strong>g).2009. Overview, http://www.cabr-betc.com/english/overview.htm.NRC (National Research Council Canada). 2008. Model National <strong>Energy</strong> Code ofCanada for Houses. National Research Council Canada 2006,https://www.nationalcodes.ca/mnech/<strong>in</strong>dex_e.shtml.NRC (National Research Council of <strong>the</strong> Canadian Commission on Build<strong>in</strong>g and FireCodes). 1997. Model National <strong>Energy</strong> Code of Canada for Build<strong>in</strong>gs 1997. Ottawa,Canada: National Research Council of Canada.NRC (National Research Council of <strong>the</strong> Canadian Commission on Build<strong>in</strong>g and FireCodes). 1997. Model National <strong>Energy</strong> Code for Houses 1997. Ottawa, Canada: NationalResearch Council of Canada.OEE (Office of <strong>Energy</strong> <strong>Efficiency</strong>). 2006. Improv<strong>in</strong>g <strong>Energy</strong> Performance <strong>in</strong> Canada:Report to Parliament Under <strong>the</strong> <strong>Energy</strong> <strong>Efficiency</strong> Act For <strong>the</strong> Fiscal Year 2005-2006.Ottawa: Natural Resources Canada.97


OEE. 2008. <strong>Energy</strong> Use Data Handbook Tables (Canada),http://www.oee.nrcan.gc.ca/corporate/statistics/neud/dpa/handbook_tables.cfm?attr=0.OEE. 2009. The State of <strong>Energy</strong> <strong>Efficiency</strong> <strong>in</strong> Canada, Office of <strong>Energy</strong> <strong>Efficiency</strong>Report 2006. Natural Resources Canada, Ottawa.People’s Republic of Ch<strong>in</strong>a Industry Standard. 2003. Design Standard for <strong>Energy</strong><strong>Efficiency</strong> of Residential Build<strong>in</strong>gs <strong>in</strong> Hot Summer and Warm W<strong>in</strong>ter Zone, Beij<strong>in</strong>g: JGJ75-2003.Pope, S. and Dubrous, F. 2001. Whole Build<strong>in</strong>g <strong>Energy</strong> Sim. For Access to IncentiveFund<strong>in</strong>g: Lessons Learned from Canada’s Commercial Build<strong>in</strong>gs Incentive Program.Ontario: Build<strong>in</strong>gs Group/CETC,http://www.esim.ca/2001/documents/proceed<strong>in</strong>gs/Session4-2.pdf.ReaD (Directory Database of Research and Development Activities). 2004. GeneralBuild<strong>in</strong>g Research Corporation of Japan, http://read.jst.go.jp/<strong>in</strong>dex_e.html.Tienan, L.I. 2006. <strong>Energy</strong> <strong>Efficiency</strong> (S&L) <strong>in</strong> Ch<strong>in</strong>a. Brazil: Ch<strong>in</strong>a StandardCertification Center and ELI Quality Certification Institute, November 28, slides,http://www.efficientlight<strong>in</strong>g.net/doc/20070105(5).pdf.Wu, Yong and Changb<strong>in</strong> Liu. 2007. Policy Study on Ch<strong>in</strong>a Build<strong>in</strong>g <strong>Energy</strong> IncentiveProgram. Beij<strong>in</strong>g: Ch<strong>in</strong>a Construction Industry Publish<strong>in</strong>g House.Wu, Yong, Changb<strong>in</strong> Liu, Y<strong>in</strong>gzong Liu and Hongle Qu. 2007. Study on Ch<strong>in</strong>a Build<strong>in</strong>g<strong>Energy</strong> Management System. Beij<strong>in</strong>g: Ch<strong>in</strong>a Construction Industry Publish<strong>in</strong>g House.98

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!