27.11.2012 Views

FLOW AROUND A CYLINDER - istiarto

FLOW AROUND A CYLINDER - istiarto

FLOW AROUND A CYLINDER - istiarto

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

��<br />

z-momentum:<br />

– 4.40 –<br />

��1 �b � bP uP � �<br />

B Fn,z � � F ��<br />

��<br />

��<br />

�<br />

t, z ��<br />

��<br />

� ��<br />

b<br />

� ��� t�2 ue n,x � 2 ve n, y � we n,z�e<br />

n,z � �t,wall �ue t,x � v et,y�e t, z<br />

� Sb �P<br />

�n,P �� �������������������������� �� �� ���������������������������� ��<br />

b<br />

� � ��<br />

P<br />

� �t �e n,z en,z�� �t,wall et,z et,z � � B<br />

� S b<br />

�<br />

�� �������������� �� �������������� n,P ��<br />

�b P�B<br />

��1<br />

wP (4.91c)<br />

Wall function for the k equation. The wall function is used to evaluate the source term<br />

of the k equation, G � ��� The turbulent kinetic-energy production, G, for cells<br />

neighboring the wall is not evaluated by Eq. 4.12, but is directly obtained from Eq. 4.83.<br />

Since the velocity has been known when solving the k equation, this information can be<br />

used in calculating the wall shear-stress term in the G equation, Eq. 4.83. The turbulent<br />

kinetic-energy dissipation, �, is evaluated by Eq. 4.84; this contains a non-linear term in k<br />

which is then linearized. The following steps apply:<br />

� set all coefficients related to the contribution from the boundary node B to zero:<br />

C D C D<br />

aB � aB � 0, a P<br />

� � � �a B P�<br />

� b<br />

B D � � � 0<br />

B<br />

� compute the source, that is the energy production and dissipation, and linearise the<br />

source:<br />

m�1<br />

b � bP kP � �G P � �P�V P<br />

��<br />

� �<br />

m 1 4 m 1 2<br />

c� kP<br />

� �<br />

� c� 3 4 m<br />

kP � � �� nt ��<br />

�� �� V P<br />

V P<br />

�� � �� � � b n,P � �n,P �� ������ �� �� �������� ����<br />

���� �� �� ������ ��<br />

b<br />

b P<br />

1 2<br />

m�1<br />

k (4.92)<br />

P<br />

where the magnitude of the shear stress is evaluated with the velocity already<br />

computed from the momentum equations (see Eq. 4.82):<br />

m<br />

���<br />

nt ��<br />

�� �� �<br />

�� � ��b<br />

1<br />

�<br />

��<br />

� �<br />

� �<br />

��<br />

��nt,b � c �� 1 4 m<br />

� k<br />

��<br />

�� �<br />

ln E � n ��<br />

m<br />

� � �� t,wall ��<br />

��<br />

��<br />

� n ��<br />

�� P<br />

1 2<br />

��<br />

��<br />

��<br />

��P<br />

m�1<br />

Vt,P<br />

m<br />

� � �� t,wall ��<br />

��<br />

�� � n ��<br />

m�1 m�1 m �1 �uP et,x � vP et,y � w P et,z �<br />

�� P<br />

m�1<br />

VP � ��<br />

e t<br />

Note that k P<br />

m�1 is unknown for this computation step, while uP<br />

m�1 , vP<br />

m�1 , and w P<br />

m �1<br />

are already fixed.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!