05.12.2012 Views

5 The role of quorum-sensing in the virulence of Pseudomonas ...

5 The role of quorum-sensing in the virulence of Pseudomonas ...

5 The role of quorum-sensing in the virulence of Pseudomonas ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

AQ: 43<br />

AQ: 44<br />

AQ: 45<br />

<strong>the</strong> focus <strong>of</strong> studies describ<strong>in</strong>g <strong>the</strong>ir desialylation <strong>of</strong> host cells<br />

and <strong>in</strong>volvement <strong>in</strong> adhesion <strong>in</strong> vitro and <strong>in</strong> vivo [3, 26, 27, 42,<br />

43, 46]. Deletion <strong>of</strong> ei<strong>the</strong>r nanA or nanB was shown to have<br />

significant effects on nasopharyngeal colonization and pneumonia<br />

[34, 47], a f<strong>in</strong>d<strong>in</strong>g that strongly matches <strong>the</strong> proposed <strong>role</strong> <strong>of</strong><br />

<strong>the</strong>se enzymes <strong>in</strong> <strong>the</strong> novel sialic acid–<strong>in</strong>ducible carriage phenotype<br />

described <strong>in</strong> <strong>the</strong> present study.<br />

We now propose a new model for <strong>the</strong> pathogenesis <strong>of</strong> pneumococcal<br />

pneumonia <strong>in</strong> which a local, virus-<strong>in</strong>duced <strong>in</strong>crease <strong>in</strong><br />

<strong>the</strong> free sialic acid concentration <strong>in</strong> <strong>the</strong> upper respiratory tract<br />

would serve as a signal for coloniz<strong>in</strong>g pneumococci to <strong>in</strong>crease <strong>in</strong><br />

numbers, possibly by promot<strong>in</strong>g <strong>the</strong> formation <strong>of</strong> bi<strong>of</strong>ilm. In<br />

this context, <strong>the</strong> up-regulation <strong>of</strong> <strong>the</strong> pneumococcal neuram<strong>in</strong>idases<br />

would provide a positive feedback loop. <strong>The</strong> higher colonization<br />

density <strong>in</strong> <strong>the</strong> nasopharynx would eventually lead to<br />

passive shedd<strong>in</strong>g <strong>of</strong> pneumococci to <strong>the</strong> lower respiratory tract,<br />

which, worsened by virus-<strong>in</strong>duced damage to bronchoalveolar<br />

cells [48], would f<strong>in</strong>ally <strong>in</strong>itiate development <strong>of</strong> an acute pulmonary<br />

<strong>in</strong>fection.<br />

In conclusion, <strong>the</strong> data from <strong>the</strong> present study demonstrate<br />

that free sialic acid (1) is essential for bi<strong>of</strong>ilm formation <strong>in</strong> vitro<br />

at concentrations with physiologic relevance, (2) is able to <strong>in</strong>duce<br />

<strong>the</strong> expression <strong>of</strong> neuram<strong>in</strong>idase genes and a <strong>virulence</strong> regulator,<br />

and (3) leads to an <strong>in</strong>crease <strong>in</strong> nasopharyngeal pneumococcal<br />

loads and <strong>in</strong>stigates <strong>the</strong> spread <strong>of</strong> pneumococci to <strong>the</strong><br />

lower respiratory tract. <strong>The</strong>se data support <strong>the</strong> hypo<strong>the</strong>sis that<br />

free sialic acid is a trigger that converts a harmless coloniz<strong>in</strong>g<br />

pneumococcus to an <strong>in</strong>vasive pathogen. This f<strong>in</strong>d<strong>in</strong>g, <strong>in</strong> addition<br />

to add<strong>in</strong>g substantial knowledge to <strong>the</strong> pathogenesis <strong>of</strong><br />

pneumococcal disease, po<strong>in</strong>ts to novel strategies for <strong>the</strong> prevention<br />

<strong>of</strong> <strong>in</strong>vasive disease, similar to those proposed for <strong>the</strong> prevention<br />

<strong>of</strong> disease due to nontypeable H. <strong>in</strong>fluenzae [15], by<br />

treat<strong>in</strong>g carriage or even overt disease through <strong>in</strong>terventions affect<strong>in</strong>g<br />

free sialic acid on human mucosae and, thus, prevent<strong>in</strong>g<br />

sialic acid from act<strong>in</strong>g as an environmental cue to <strong>the</strong> pneumococcus.<br />

Acknowledgments<br />

We thank Velia Braione, Tiziana Bracc<strong>in</strong>i, and Anna Cuppone for help<br />

with laboratory procedures.<br />

References<br />

1. Ispahani P, Slack RCB, Donald FE, Weston WC, Rutter N. Twenty year<br />

surveillance <strong>of</strong> <strong>in</strong>vasive pneumococcal disease <strong>in</strong> Nott<strong>in</strong>gham: serogroups<br />

responsible and implications for immunisation. Arch Dis Child<br />

2004; 89:757–62.<br />

2. Melegaro A, Edmunds WJ, Pebody R, Miller E, George R. <strong>The</strong> current burden<br />

<strong>of</strong> pneumococcal disease <strong>in</strong> England and Wales. J Infect 2006; 52:37–<br />

48.<br />

3. Kadioglu A, Weiser JN, Paton JC, Andrew PW. <strong>The</strong> <strong>role</strong> <strong>of</strong> Streptococcus<br />

pneumoniae <strong>virulence</strong> factors <strong>in</strong> host respiratory colonization and disease.<br />

Nat Rev Microbiol 2008; 6:288–301.<br />

4. Gray BM, Converse GM 3rd, Dillon HC Jr. Epidemiologic studies <strong>of</strong><br />

Streptococcus pneumoniae <strong>in</strong> <strong>in</strong>fants: acquisition, carriage, and <strong>in</strong>fection<br />

dur<strong>in</strong>g <strong>the</strong> first 24 months <strong>of</strong> life. J Infect Dis 1980; 142:923–33.<br />

8 ● JID 2009:199 (15 May) ● Trappetti et al.<br />

tapraid5/z9d-jid/z9d-jid/z9d01009/z9d4168d09a sangreyj S�5 3/20/09 Art: 42180<br />

5. Hogberg L, Geli P, R<strong>in</strong>gberg H, Melander E, Lipsitch M, Ekdahl K.<br />

Age- and serogroup-related differences <strong>in</strong> observed durations <strong>of</strong> nasopharyngeal<br />

carriage <strong>of</strong> penicill<strong>in</strong>-resistant pneumococci. J Cl<strong>in</strong><br />

Microbiol 2007; 45:948–52.<br />

6. Mühlemann K, Uehl<strong>in</strong>ger DE, Büchi W, Gorgievski M, Aebi C. <strong>The</strong><br />

prevalence <strong>of</strong> penicill<strong>in</strong>-non-susceptible Streptococcus pneumoniae<br />

among children aged �5 years correlates with <strong>the</strong> biannual epidemic<br />

activity <strong>of</strong> respiratory syncytial virus. Cl<strong>in</strong> Microbiol Infect 2006; 12:<br />

873–9.<br />

7. Iyer R, Camilli A. Sucrose metabolism contributes to <strong>in</strong> vivo fitness <strong>of</strong><br />

Streptococcus pneumoniae. Mol Microbiol 2007; 66:1–13.<br />

8. Polissi A, Pontiggia A, Feger G, et al. Large-scale identification <strong>of</strong> <strong>virulence</strong><br />

genes from Streptococcus pneumoniae. Infect Immun 1998; 66:5620–9.<br />

9. Lau GW, Haataja S, Lonetto M, et al. A functional genomic analysis <strong>of</strong><br />

type 3 Streptococcus pneumoniae <strong>virulence</strong>. Mol Microbiol 2001; 4:555–<br />

71.<br />

10. Hava DL, Camilli A. Large-scale identification <strong>of</strong> serotype 4 Streptococcus<br />

pneumoniae <strong>virulence</strong> factors. Mol Microbiol 2002; 45:1389–406.<br />

11. Shanks RM, Donegan NP, Graber ML, et al. Hepar<strong>in</strong> stimulates Staphylococcus<br />

aureus bi<strong>of</strong>ilm formation. Infect Immun 2005; 73:4596–606.<br />

12. Hooper LV, Xu J, Falk PG, Midtvedt T, Gordon JI. A molecular sensor<br />

that allows a gut commensal to control its nutrient foundation <strong>in</strong> a<br />

competitive ecosystem. Proc Natl Acad Sci USA 1999; 96:9833–8.<br />

13. Sohanpal BK, El-Labany S, Lahooti M, Plumbridge JA, Blomfield IC.<br />

Integrated regulatory responses <strong>of</strong> fimB to N-acetylneuram<strong>in</strong>ic<br />

(sialic) acid and GlcNAc <strong>in</strong> Escherichia coli K-12. Proc Natl Acad Sci<br />

USA 2004; 101:16322–7.<br />

14. Gre<strong>in</strong>er LL, Watanabe H, Phillips NJ, et al. Nontypeable Haemophilus <strong>in</strong>fluenzae<br />

stra<strong>in</strong> 2019 produces a bi<strong>of</strong>ilm conta<strong>in</strong><strong>in</strong>g N-acetylneuram<strong>in</strong>ic acid<br />

that may mimic sialylated O-l<strong>in</strong>ked glycans. Infect Immun 2004; 72:4249–<br />

60.<br />

15. Johnston JW, Apicella MA. Sialic acid metabolism and regulation by<br />

Haemophilus <strong>in</strong>fluenzae: potential novel antimicrobial <strong>the</strong>rapies. Curr<br />

Infect Dis Rep 2008; 10::83–4.<br />

16. Kilian M, Rölla G. Initial colonization <strong>of</strong> teeth <strong>in</strong> monkeys as related to<br />

diet. Infect Immun 1976; 14:1022–7.<br />

17. Iannelli F, Pozzi G. Method for <strong>in</strong>troduc<strong>in</strong>g specific and unmarked mutations<br />

<strong>in</strong>to <strong>the</strong> chromosome <strong>of</strong> Streptococcus pneumoniae. Mol Biotechnol<br />

2004; 26:81–6.<br />

18. Oggioni MR, Trappetti C, Kadioglu A, et al. Switch from planktonic to<br />

sessile life: a major event <strong>in</strong> pneumococcal pathogenesis. Mol Microbiol<br />

2006; 61:1196–210.<br />

19. Oggioni MR, Iannelli F, Ricci S, et al. Antibacterial activity <strong>of</strong> a<br />

competence-stimulat<strong>in</strong>g peptide <strong>in</strong> experimental sepsis caused by Streptococcus<br />

pneumoniae. Antimicrob Agents Chemo<strong>the</strong>r 2004; 48:4725–32.<br />

20. Schmittgen TD, Livak KJ. Analyz<strong>in</strong>g real-time PCR data by <strong>the</strong> comparative<br />

C(T) method. Nat Protoc 2008; 3:1101–8.<br />

21. Alymova IV, Portner A, Takimoto T, Boyd KL, Sudhakara Babu Y, McCullers<br />

JA. <strong>The</strong> novel para<strong>in</strong>fluenza virus hemagglut<strong>in</strong><strong>in</strong>-neuram<strong>in</strong>idase <strong>in</strong>hibitor<br />

BCX 2798 prevents lethal synergism between a paramyxovirus and<br />

Streptococcus pneumoniae. Antimicrob Agents Chemo<strong>the</strong>r 2005; 49:398–<br />

405.<br />

22. McCullers JA. Effect <strong>of</strong> antiviral treatment on <strong>the</strong> outcome <strong>of</strong> secondary<br />

bacterial pneumonia after <strong>in</strong>fluenza. J Infect Dis 2004; 190:519–26.<br />

23. Tram TH, Brand Miller JC, McNeil Y, McVeagh P. Sialic acid content <strong>of</strong><br />

<strong>in</strong>fant saliva: comparison <strong>of</strong> breast fed with formula fed <strong>in</strong>fants. Arch Dis<br />

Child 1997; 77:315–8.<br />

24. Lee JY, Chung JW, Kim YK, Chung SC, Kho HS. Comparison <strong>of</strong> <strong>the</strong><br />

composition <strong>of</strong> oral mucosal residual saliva with whole saliva. Oral Dis<br />

2007; 13:550–4.<br />

25. Siqueira WL, Siquiera MF, Mustacchi Z, de Oliveira E, Nicolau J. Salivary<br />

parameters <strong>in</strong> <strong>in</strong>fants aged 12 to 60 months with Down syndrome.<br />

Spec Care Dentist 2007; 27:203–6.<br />

26. Berry AM, Paton JC, Glare EM, Hansman D, Catcheside DE. Clon<strong>in</strong>g<br />

and expression <strong>of</strong> <strong>the</strong> pneumococcal neuram<strong>in</strong>idase gene <strong>in</strong> Escherichia<br />

coli. Gene 1988; 71:299–305.<br />

AQ: 46<br />

AQ: 47

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!