04.01.2013 Views

Springer - Read

Springer - Read

Springer - Read

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

8.5 Estimation For State-Space Models 281<br />

with initial values µ M1 0, σ 2 w 8, and σ 2 v 4. The maximum likelihood<br />

estimates of the parameters are found by first minimizing (8.5.12) with ˆµ given by<br />

(8.5.10). Substituting these values into (8.5.11) gives ˆσ 2 w . The resulting estimates are<br />

ˆµ .906, ˆσ 2 v 5.351, and ˆσ 2 w 8.233, which are in reasonably close agreement<br />

with the true values.<br />

Example 8.5.2 International airline passengers, 1949–1960; AIRPASS.TSM<br />

The monthly totals of international airline passengers from January 1949 to December<br />

1960 (Box and Jenkins, 1976) are displayed in Figure 8.3. The data exhibit both a<br />

strong seasonal pattern and a nearly linear trend. Since the variability of the data<br />

Y1,...,Y144 increases for larger values of Yt, it may be appropriate to consider a<br />

logarithmic transformation of the data. For the purpose of this illustration, however,<br />

we will fit a structural model incorporating a randomly varying trend and seasonal<br />

and noise components (see Example 8.2.3) to the raw data. This model has the form<br />

Yt GXt + Wt, {Wt} ∼WN 0,σ 2<br />

w<br />

Xt+1 F Xt + Vt, {Vt} ∼WN(0, Q),<br />

where Xt is a 13-dimensional state-vector,<br />

⎡<br />

⎤<br />

1<br />

⎢ 0<br />

⎢ 0<br />

⎢<br />

F ⎢ 0<br />

⎢ 0<br />

⎢<br />

⎣ .<br />

1<br />

1<br />

0<br />

0<br />

0<br />

.<br />

0<br />

0<br />

−1<br />

1<br />

0<br />

.<br />

0<br />

0<br />

−1<br />

0<br />

1<br />

.<br />

···<br />

···<br />

···<br />

···<br />

···<br />

. ..<br />

0<br />

0<br />

−1<br />

0<br />

0<br />

.<br />

0<br />

⎥<br />

0 ⎥<br />

−1 ⎥<br />

0 ⎥<br />

⎥,<br />

0 ⎥<br />

. ⎦<br />

0 0 0 0 ··· 1 0<br />

and<br />

G [ 1 0 1 0 ··· 0 ] ,<br />

⎡<br />

σ<br />

⎢<br />

Q ⎢<br />

⎣<br />

2<br />

1<br />

0<br />

0<br />

σ<br />

0 0 ··· 0<br />

2<br />

0<br />

2<br />

0<br />

0<br />

σ<br />

0 ··· 0<br />

2<br />

⎤<br />

0<br />

.<br />

0<br />

.<br />

3<br />

0<br />

.<br />

0<br />

0<br />

.<br />

···<br />

···<br />

. ..<br />

⎥<br />

0 ⎥<br />

0 ⎥.<br />

⎥<br />

. ⎦<br />

0 0 0 0 ··· 0<br />

The parameters of the model are µ,σ 2 1 ,σ2 2 ,σ2 3 , and σ 2 w , where µ X1. Minimizing<br />

(8.5.12) with respect to Q ∗ we find from (8.5.11) and (8.5.12) that<br />

ˆσ 2<br />

1<br />

, ˆσ 2<br />

2<br />

, ˆσ 2<br />

3<br />

, ˆσ 2<br />

w<br />

,<br />

(170.63,.00000, 11.338,.014179)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!