15.01.2013 Views

Nucleotide Analogs - Jena Bioscience

Nucleotide Analogs - Jena Bioscience

Nucleotide Analogs - Jena Bioscience

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Nucleotide</strong> <strong>Analogs</strong><br />

70<br />

XTP<br />

Xanthosine-5’-triphosphate, Triethylammonium salt<br />

Cat. No. Amount (Units) Price (€)<br />

NU-602S 150 75,--<br />

NU-602L 750 300,--<br />

Molecular Formula: C 10 H 12 N 4 O 15 P 3 (Anion)<br />

Molecular Weight: 521.14 (Anion)<br />

O<br />

O<br />

O<br />

HO<br />

O<br />

P<br />

O<br />

O O<br />

P O P O<br />

3 (CH 3CH 2) 3NH<br />

OH<br />

O<br />

OH<br />

N<br />

N<br />

O<br />

NH<br />

NH<br />

Selected references:<br />

Noji et al. (2001) Purine but not pyrimidine nucleotides support<br />

rotation of F(1)-ATPase. J. Biol. Chem. 276 (27):25480.<br />

Fulga et al. (2001) SR β coordinates signal sequence release<br />

from SRP with ribosome binding to the translocon. EMBO J.<br />

20 (9):2338.<br />

Legate et al. (2000) <strong>Nucleotide</strong>-dependent binding of the<br />

GTPase domain of the signal recognition particle receptor<br />

β-subunit to the α-subunit. J. Biol. Chem. 275 (35):27439.<br />

Chakrabarti et al. (2000) Nucleoside triphosphate specifi city<br />

of tubulin. Biochemistry 39 (33):10269.<br />

Sakash et al. (2000) The use of nucleotide analogs to<br />

evaluate the mechanism of the heterotropic response of<br />

Escherichia coli aspartate transcarbamoylase. Protein Sci.<br />

9 (1):53.<br />

Muraoka et al. (1999) Effects of purine nucleotide analogues<br />

on microtubule assembly. Cell Struct. Funct. 24 (5):305.<br />

Wang et al. (1999) Identifi cation of residues of Escherichia<br />

coli phosphofructokinase that contribute to nucleotide binding<br />

and specifi city. Biochemistry 38 (14):4313.<br />

Seifert et al. (1999) Effects of guanine, inosine, and xanthine<br />

nucleotides on β(2)-adrenergic receptor/G(s) interactions:<br />

Evidence for multiple receptor conformations. Mol.<br />

Pharmacol. 56 (2):348.<br />

Hwang et al. (1999) Structure-based identifi cation of a novel<br />

NTPase from Methanococcus jannaschii. Nat. Struct. Biol. 6<br />

(7):691.<br />

Yu et al. (1997) Characterization of a Go α mutant that binds<br />

xanthine nucleotides. J. Biol. Chem. 272 (29):18015.<br />

Rybin et al. (1996) GTPase activity of Rab5 acts as a timer for<br />

endocytic membrane fusion. Nature 383 (6597):266.<br />

Powers et al. (1995) Reciprocal stimulation of GTP hydrolysis<br />

by 2 directly interacting GTPases. Science 269 (5229):1422.<br />

IMP<br />

Inosine-5’-monophosphate, Triethylammonium salt<br />

Cat. No. Amount (Units) Price (€)<br />

NU-1201S 150 75,--<br />

NU-1201L 750 300,--<br />

Molecular Formula: C 10 H 12 N 4 O 8 P (Anion)<br />

Molecular Weight: 347.20 (Anion)<br />

O<br />

HO<br />

O<br />

P O<br />

(CH3CH2)3NH<br />

OH<br />

O<br />

OH<br />

N<br />

N<br />

O<br />

N<br />

NH<br />

Selected references:<br />

Bhattacharya et al. (2000) Regiospecifi city of nucleotide-amino<br />

acid mating vs. water dynamics: a key to protein-nucleic acid<br />

assemblies: structure of unidecahydrated inosine-5’-monophosphate<br />

and L-glutamic acid. J. Chem. Crystallogr. 30 (10):655.<br />

Bera et al. (1999) Infl uences of cooperative hydrogen bonding<br />

economy on protein-nucleic acid complexation: Structure of<br />

unidecahydrated Inosine C5 ‚-monophosphate and L-glutamine<br />

cocrystal at atomic resolution. J. Chem. Crystallogr. 29 (5):531.<br />

O<br />

Heroux et al. (1999) Crystal structures of the Toxoplasma gondii<br />

hypoxanthine-guanine phosphoribosyltransferase-GMP and -<br />

IMP complexes: Comparison of purine binding interactions with<br />

the XMP complex. Biochemistry-US 38 (44):14485.<br />

Tullson et al. (1999) IMP degradative capacity in rat skeletal<br />

muscle fi ber types. Mol. Cell. Biochem. 199 (1-2):111.<br />

Bera et al. (1998) Hydrogen bonding cooperativity of water to<br />

nucleotide recognition: structure of octadecahydrated inosine<br />

5’-monophosphate at atomic resolution. J. Chem. Crystallogr.<br />

28 (7):509.<br />

Szabados et al. (1998) Inosine-5’-monophosphate analogues<br />

as inhibitors of human IMP cyclohydrolase and cellular growth.<br />

Biochem. Mol. Biol. Int. 44 (3):617.<br />

Mukhopadhyay et al. (1995) Role of water-molecules in protein-nucleic<br />

acid interactions – visualization of a model highly<br />

hydrated complex structure of inosine 5’-monophosphate and<br />

L-serine at atomic-resolution. J. Chem. Crystallogr. 25 (8):477.<br />

Yu et al. (1993) Sulfur-containing volatile compounds generated<br />

from the interactions of inosine-5’-monophosphate and the<br />

nonvolatile fl avor precursors of garlic. Abstr. Pap. Am. Chem.<br />

S. 206:138, Part 1.<br />

Greenhaff et al. (1993) Energy-metabolism in single human<br />

muscle-fi bers during intermittent contraction with occluded<br />

circulation. J. Physiol.-London 460:443.<br />

Schiffman et al. (1987) Inosine-5’-monophosphate and inosine<br />

enhance some sweet tastes. Chem. Senses 12 (4):694.<br />

Capparelli et al. (1983) The site of metal-binding in an iron(II)<br />

derivative of inosine 5’-monophosphate – an X-ray and spectral<br />

study. FEBS Lett. 163 (2):241.<br />

Young et al. (1983) An enzymatic method for inosine 5’-monophosphate<br />

in the femtomole range. Anal. Biochem. 134 (1):11.<br />

IDP<br />

Inosine-5’-diphosphate, Triethylammonium salt<br />

Cat. No. Amount (Units) Price (€)<br />

NU-1202S 100 75,--<br />

NU-1202L 500 300,--<br />

Molecular Formula: C 10 H 12 N 4 O 11 P 2 (Anion)<br />

Molecular Weight: 426.17 (Anion)<br />

O<br />

O<br />

O<br />

O<br />

P P<br />

HO O<br />

O<br />

2 (CH 3CH 2) 3NH<br />

OH<br />

O<br />

OH<br />

N<br />

N<br />

O<br />

N<br />

NH<br />

Selected references:<br />

AlAli et al. (1996) Effects of metal ions on the activity of cytosolic<br />

phosphoenolpyruvate carboxykinase from camel kidney. Arab.<br />

Gulf J. Sci. Res. 14 (3):535.<br />

Vial et al. (1995) Purifi cation, partial kinetic characterization<br />

and reactive sulfhydryl-groups of the phosphoenolpyruvate<br />

carboxykinase from perumytilus-purpuratus adductor muscle.<br />

Comp. Biochem. Phys. B. 112 (3):451.<br />

Okkuluri et al. (1994) Peparation, characterization and crystallization<br />

of an antibody fab fragment that recognizes RNAcrystal-structures<br />

of native fab and 3 fab-mononucleotide complexes.<br />

J. Mol. Biol. 243 (2):283.<br />

Jetten et al. (1994) Regulation of phospho(enol)-pyruvate and<br />

oxaloacetate-converting enzymes in corynebacterium-glutamicum.<br />

Appl. Microbiol. Biot. 41 (1):47.<br />

Weng et al. (1994) Hydrogen-bond interactions of g-proteins<br />

with the guanine ring moiety of guanine-nucleotides. Protein<br />

Sci. 3 (1):22.<br />

Vicente et al. (1991) Differentiation between several types of<br />

phosphohydrolases in light microsomes of corn roots. Plant<br />

Physiol. 96 (4):1345.<br />

Tung et al. (1991) On the mechanism of nucleotide diphosphate<br />

activation of the ATP-sensitive K + channel in ventricular cell of<br />

Guinea-pig. J. Physiol.-London 437:239.<br />

Schramm et al. (1971) Studies on allosteric modifi cation of<br />

nucleoside diphosphatase activity by magnesium nucleoside<br />

triphosphates and inosine diphosphate. Biochemistry-US 10<br />

(12):2272.<br />

Oklik (1955) The formation of nucleoside triphosphate from inosine<br />

diphosphate in yeast. Biochim. Biophys. Acta 16 (4):610.<br />

ITP<br />

http://www.jenabioscience.com<br />

Inosine-5’-triphosphate, Triethylammonium salt<br />

Cat. No. Amount (Units) Price (€)<br />

NU-1203S 150 75,--<br />

NU-1203L 750 300,--<br />

Molecular Formula: C 10 H 12 N 4 O 14 P 3 (Anion)<br />

Molecular Weight: 505.14 (Anion)<br />

O<br />

O<br />

O<br />

HO<br />

O<br />

P<br />

O<br />

O O<br />

P O P O<br />

3 (CH3CH2)3NH<br />

OH<br />

O<br />

OH<br />

N<br />

N<br />

O<br />

N<br />

NH<br />

Selected references:<br />

Noji et al. (2001) Purine but not pyrimidine nucleotides support<br />

rotation of F(1)-ATPase. J. Biol. Chem. 276 (27):25480.<br />

Bianchi et al. (2001) Intramolecular equilibria in metal ion<br />

complexes of guanosine 5’-triphosphate (GTP(4-)) and inosine<br />

5’-triphosphate (ITP4-) in aqueous solution. J. Inorg. Biochem.<br />

86 (1):148.<br />

Chakrabarti et al. (2000) Nucleoside triphosphate specifi city of<br />

tubulin. Biochemistry 39 (33):10269.<br />

Jacob et al. (2000) Involvement of asparagine 118 in the nucleotide<br />

specifi city of the catalytic subunit of protein kinase CK2.<br />

FEBS Lett. 466 (2-3):363.<br />

Seifert et al. (1999) Effects of guanine, inosine, and xanthine<br />

nucleotides on β(2)-adrenergic receptor/G(s) interactions:<br />

evidence for multiple receptor conformations. Mol. Pharmacol.<br />

56 (2):348.<br />

Wang et al. (1999) Identifi cation of residues of Escherichia coli<br />

phosphofructokinase that contribute to nucleotide binding and<br />

specifi city. Biochemistry 38 (14):4313.<br />

Sasaki et al. (1998) Identifi cation of stable RNA hairpins causing<br />

band compression in transcriptional sequencing and their<br />

elimination by use of inosine triphosphate. Gene 222 (1):17.<br />

Nakahara et al. (1998) Inosine 5’-triphosphate can dramatically<br />

increase the yield of NASBA products targeting GC-rich and<br />

intramolecular base-paired viroid RNA. Nucleic Acids Res. 26<br />

(7):1854.<br />

Klinker et al. (1997) Functionally nonequivalent interactions of<br />

guanosine 5’-triphosphate, inosine 5’-triphosphate, and xanthosine<br />

5’-triphosphate with the retinal G-protein, transducin, and<br />

with G(i)-proteins in HL-60 leukemia cell membranes. Biochem.<br />

Pharmacol. 54 (5):551.<br />

Xanthosine and Inosine<br />

<strong>Nucleotide</strong>s<br />

Non-modifi ed and Cyclic<br />

<strong>Nucleotide</strong>s<br />

XMP<br />

Xanthosine-5‘-monophosphate, Sodium salt<br />

Cat. No. Amount (Units) Price (€)<br />

NU-603S 150 75,--<br />

NU-603L 750 300,--<br />

Molecular Formula: C H N O P (Anion)<br />

10 12 4 9<br />

Molecular Weight: 363.20 (Anion)<br />

O<br />

O<br />

HO<br />

O<br />

P O<br />

Na<br />

OH<br />

O<br />

OH<br />

N<br />

N<br />

NH<br />

NH<br />

Selected references:<br />

Fulga et al. (2001) SR beta coordinates signal sequence release<br />

from SRP with ribosome binding to the translocon. EMBO<br />

J. 20 (9):2338.<br />

O

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!