07.02.2013 Views

Optimization and Computational Fluid Dynamics - Department of ...

Optimization and Computational Fluid Dynamics - Department of ...

Optimization and Computational Fluid Dynamics - Department of ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

2 A Few Illustrative Examples <strong>of</strong> CFD-based <strong>Optimization</strong> 49<br />

y [mm]<br />

18<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

-2<br />

CO<br />

0.085<br />

0.08<br />

0.075<br />

0.07<br />

0.065<br />

0.06<br />

0.055<br />

0.05<br />

0.045<br />

0.04<br />

0.035<br />

0.03<br />

0.025<br />

0.02<br />

0.015<br />

0.01<br />

0.005<br />

0<br />

HCO<br />

8.4E-05<br />

7.9E-05<br />

7.4E-05<br />

6.9E-05<br />

6.4E-05<br />

5.9E-05<br />

5.4E-05<br />

4.9E-05<br />

4.4E-05<br />

3.9E-05<br />

3.4E-05<br />

2.9E-05<br />

2.4E-05<br />

1.9E-05<br />

1.4E-05<br />

9E-06<br />

4E-06<br />

-10 -5 0<br />

x [mm]<br />

5 10<br />

Fig. 2.19 Mass fraction field <strong>of</strong> CO (left) <strong>and</strong> HCO (right) at the optimal point<br />

The Reynolds-averaged turbulent flow variables can be separated as:<br />

ui (x,t)=Ui (x,t)+u ′ i (x,t) (2.13)<br />

where the vector Ui is the time-averaged velocity <strong>and</strong> u ′ i<br />

is the fluctuation<br />

term. The time-averaged mass conservation equation reads:<br />

∂Ui<br />

= 0 (2.14)<br />

∂xi<br />

<strong>and</strong> the momentum equations can be written as:<br />

ρ ∂Ui ∂Ui<br />

+ ρUi = −<br />

∂t ∂xj<br />

∂P<br />

+<br />

∂xi<br />

∂<br />

� �<br />

∂Ui<br />

μ +<br />

∂xj ∂xj<br />

∂Uj<br />

��<br />

+<br />

∂xi<br />

∂<br />

(−ρu<br />

∂xj<br />

′ iu′ j ) . (2.15)<br />

According to the Boussinesq hypothesis, the Reynolds stress-tensor (corresponding<br />

to the last term in Eq .(2.15)) can be modeled as:<br />

−u ′ iu′ �<br />

∂Ui<br />

j = νt +<br />

∂xj<br />

∂Uj<br />

�<br />

−<br />

∂xi<br />

2<br />

3 kδij (2.16)<br />

where νt is usually called turbulent eddy viscosity, expressed as:<br />

νt = k<br />

ω<br />

. (2.17)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!