20.07.2013 Views

Raport de cercetare - Lorentz JÄNTSCHI

Raport de cercetare - Lorentz JÄNTSCHI

Raport de cercetare - Lorentz JÄNTSCHI

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

H(·,·) Σ(·) Σ(·) 2 ΣA(·) ΣA(·) 2 Σ(1/(·)) Σ(1/(·)) 2 ΣA(1/(·)) 2 ΣA(1/(·)) 2<br />

H(D,CJD) 600 6954 60.5 242 7.971 1.315 3.308 0.783<br />

H(D,CJΔ) 347 2491 27.5 63 19.834 10.582 9.493 7.652<br />

H(D,CFD) 622 7616 60.5 242 7.717 1.278 3.308 0.783<br />

H(D,CFΔ) 349 2571 27.5 63 19.813 10.580 9.493 7.652<br />

H(D,SzD) 756 13048 60.5 242 7.389 1.250 3.308 0.783<br />

H(D,SzΔ) 769 13500 60.5 242 7.333 1.238 3.308 0.783<br />

H(Δ,CJD) 1292 32244 258.5 4718 3.574 0.255 0.896 0.075<br />

H(Δ,CJΔ) 653 6885 104.5 702 7.676 1.243 2.252 0.412<br />

H(Δ,CFD) 1338 35082 258.5 4718 3.437 0.244 0.896 0.075<br />

H(Δ,CFΔ) 655 6965 104.5 702 7.655 1.241 2.252 0.412<br />

H(Δ,SzD) 1564 51568 258.5 4718 3.189 0.224 0.896 0.075<br />

H(Δ,SzΔ) 1592 53560 258.5 4718 3.166 0.222 0.896 0.075<br />

÷ Produsul Schultz a două matrici S(·,A,·):<br />

o Definiţie: S(X,A,Y)i,j=X(A+Y);<br />

o Aplicaţii:<br />

Schultz CJD CJΔ CFD CFΔ SzD SzΔ<br />

A S(A,A,CJD) S(A,A,CJΔ) S(A,A,CFD) S(A,A,CFΔ) S(A,A,SzD) S(A,A,SzΔ)<br />

D S(D,A,CJD) S(D,A,CJΔ) S(D,A,CFD) S(D,A,CFΔ) S(D,A,SzD) S(D,A,SzΔ)<br />

Δ S(Δ,A,CJD) S(Δ,A,CJΔ) S(Δ,A,CFD) S(Δ,A,CFΔ) S(Δ,A,SzD) S(Δ,A,SzΔ)<br />

o Indici pe matricile Schultz:<br />

S(·,A,·) Σ(·) Σ(·) 2 ΣA(·) ΣA(·) 2 Σ(1/(·)) Σ(1/(·)) 2 ΣA(1/(·)) 2 ΣA(1/(·)) 2<br />

S(A,A,CJD) 550.5 4833.5 61 248 8.76175 1.31487 3.47024 0.72197<br />

S(A,A,CJΔ) 341.5 1987.5 35 59 16.89960 6.16609 8.11905 4.48810<br />

S(A,A,CFD) 565.5 5205.5 64 292 8.46774 1.26196 3.41607 0.70670<br />

S(A,A,CFΔ) 342.5 2003.5 35 59 16.81627 6.14526 8.11905 4.48810<br />

S(A,A,SzD) 628.5 6339.5 61 248 7.90838 1.13978 3.47024 0.72197<br />

S(A,A,SzΔ) 638.5 7171.5 63 342 7.49169 1.45677 3.43849 1.08596<br />

S(D,A,CJD) 6358.5 728779 1215 137976 0.57811 0.00663 0.13649 0.00177<br />

S(D,A,CJΔ) 3573.5 217760 712 45023 1.01352 0.01929 0.22652 0.00467<br />

S(D,A,CFD) 6576 764461 1278.5 147548 0.55208 0.00590 0.12597 0.00145<br />

S(D,A,CFΔ) 3591 219152 718.5 45529 1.00766 0.01898 0.22338 0.00450<br />

S(D,A,SzD) 7440 1002756 1515.5 219149 0.49894 0.00496 0.11222 0.00123<br />

S(D,A,SzΔ) 7786 1016184 1548.5 208403 0.47479 0.00423 0.10478 0.00102<br />

S(Δ,A,CJD) 13560.5 3120452 2446 527736 0.27149 0.00139 0.06576 0.00039<br />

S(Δ,A,CJΔ) 7227.5 887001 1330 150684 0.50828 0.00483 0.12147 0.00126<br />

S(Δ,A,CFD) 14022 3290896 2598.5 573094 0.25910 0.00124 0.06093 0.00032<br />

S(Δ,A,CFΔ) 7255 890817 1339.5 151878 0.50613 0.00476 0.12055 0.00123<br />

S(Δ,A,SzD) 15724 4220049 2992.5 802176 0.23648 0.00106 0.05506 0.00028<br />

S(Δ,A,SzΔ) 15684 4367127 2991.5 792573 0.23389 0.00108 0.05216 0.00025<br />

Polinoame<br />

Polinoamele au aplicaţii importante în topologia moleculară. Următoarele polinoame sunt <strong>de</strong>finite:<br />

÷ Polinomul caracteristic (ChP) asociat unui graf G [Bolboacă SD, Jäntschi L. 2007. How Good<br />

the Characteristic Polynomial Can Be for Correlations? Int J Mol Sci 8(4):335-345] se obţine pe<br />

baza matricii <strong>de</strong> adiacenţă A=A(G) astfel: ChP(G,X)=<strong>de</strong>t[XI-A(G)]<br />

÷ Polinoamele <strong>de</strong> numărare (CDi, CMx, CcM, CSz, CCf) se <strong>de</strong>finesc astfel [Jäntschi L. 2007.<br />

Characteristic and Counting Polynomials of Nonane Isomers. Cluj: Aca<strong>de</strong>micDirect, p. 101]:<br />

C(G,M,X) = Σk≥0|{Mi,j , |Mi,j| = k}|X k , un<strong>de</strong> M=D, Mx, cM, Sz, Cf.<br />

În tabelul 10 este redată matricea caracteristică, iar în Tabelele 11-15 sunt redate matricile <strong>de</strong><br />

numărare CDi, CMx, CcM, CSz, CCf asociate grafului molecular din Tabelul 9.<br />

106

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!