10.05.2017 Views

atw 2015-01

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

nucmag.com<br />

<strong>2<strong>01</strong>5</strong><br />

1<br />

ISSN · 1431-5254<br />

16.– €<br />

14<br />

Overview of PHARE<br />

Projects Implemented<br />

in Romania<br />

22 ı Operation and New Build<br />

Nuclear Power Plant Olkiluoto 3<br />

Containment Leakage Test<br />

27 ı Energy Policy, Economy and Law<br />

General Safety Requirements for a SFR<br />

Programme<br />

inside<br />

30 ı Research and Innovation<br />

The New Brazilian Multipurpose Research Reactor<br />

66 ı Nuclear Today<br />

Cyber Security in Focus


WIR FÜHREN<br />

KERNENERGIE IN<br />

DIE ZUKUNFT.<br />

MIT SICHERHEIT.<br />

AREVA ist Weltmarktführer in der Kerntechnik und ein führendes<br />

Unternehmen bei den Erneuerbaren Energien. Wir bieten unseren Kunden<br />

innovative Lösungen, damit sie CO 2 -armen Strom erzeugen können.<br />

Für jeden Bedarf haben wir die passenden Produkte und Leistungen.<br />

Alle unsere Leistungen haben dabei eines gemeinsam: Sicherheit steht<br />

immer an erster Stelle. So zählen die deutschen Kernkraftwerke seit<br />

Jahrzehnten zu den sichersten und zuverlässigsten weltweit.<br />

www.areva.de


<strong>atw</strong> Vol. 60 (<strong>2<strong>01</strong>5</strong>) | Issue 1 ı January<br />

60<br />

Dear reader,<br />

The number 60 is of major significance for the nuclear energy landscape: Today the recognised and practiced technical<br />

operating time for nuclear power plants consists of 60 years.<br />

Initially commercial plants started operating with an approved<br />

operating time of – at least – 40 years. Technical<br />

reasons and perspectives were less decisive rather than a<br />

solid planning period for the amortization of the investment<br />

in plants. Thus for regulatory purposes the US<br />

Atomic Energy Act for instance determined the initial operating<br />

licence to 40 years with the option of a prolongation<br />

of initially 20 years. In other countries using nuclear<br />

energy, formalities are partially similar or differ completely<br />

by issuing an unlimited operating license if safe operation<br />

is guaranteed. Programs, already initiated in the 1980s, for<br />

the analysis of aging processes of nuclear power plants<br />

demonstrated that together with continuous retrofitting<br />

60 years of operation are technical and safety-related<br />

state-of-the art. On this basis the USA set worldwide the<br />

initial milestone for the operating time of nuclear power<br />

plants with 5 licences for an operation time of 60 years in<br />

2000. In the meantime 75 out one hundred U.S. nuclear<br />

power plants possess such licence and further countries<br />

followed.<br />

For more than 60 years now the <strong>atw</strong> – International<br />

Journal for Nuclear Power actively accompanies this development<br />

and all further developments in the field of peaceful<br />

use of nuclear energy. <strong>atw</strong> was initially published called<br />

“die atomwirtschaft” in the year 1956. For the first edition<br />

of the <strong>atw</strong> its publishers took note “…to report with objective<br />

clarity on all economic questions with regard to nuclear<br />

transformation”. Fifteen years later the range of subjects<br />

was also by name broadened to “atomtechnik”.The <strong>atw</strong> remains<br />

even today closely related to the guiding principle of<br />

objectivity. International technical contributions, comments<br />

and documentations published in the <strong>atw</strong> reflect<br />

this in all clarity.<br />

Anniversaries are occasions for retrospective views.<br />

However, 60 years of development for the peaceful use of<br />

nuclear energy can be hardly summarized in just a few<br />

words. Developments vary from country to country. While<br />

the German nuclear energy sector, being globally up to<br />

now the only one, needs to focus on decommissioning and<br />

dismantling of nuclear power plants due to political decisions<br />

after Fukushima, new plants are being built worldwide<br />

which shall increase the nuclear power plant capacity<br />

in a few years by 25 %. Fifteen “Newcomer” states announced<br />

their willingness to enter the field of nuclear energy.<br />

Thus altogether 200 construction projects can be referred<br />

to. Environmental protection, conservation of natural<br />

resources, security of energy supply and affordable<br />

energy cost are not being measured globally on ideological<br />

requirements by the spirit of the times, but by simple, perceptible<br />

realities and contexts.<br />

The editorial department and the publishing house<br />

took “60 years of <strong>atw</strong>” as an opportunity, to look forward in<br />

first place and to demonstrate it through a visual redesign.<br />

Nevertheless the focus remains on the content of individual<br />

categories – the editorial, comments, technical contributions,<br />

news and notes from the DAtF and the KTG. By<br />

adding a new layout, typography and colours we want to<br />

make the reading of <strong>atw</strong> more attractive and clear. Colours<br />

will be assigned to each category in order to help the<br />

reader easily identify particular key topics. Atw will remain<br />

as brand supported by a logo that optically underlines<br />

the look ahead.<br />

The historical perspective on the other hand will not be<br />

left aside. Every <strong>atw</strong> issue in <strong>2<strong>01</strong>5</strong> will be accompanied by<br />

a historical contribution. In this current issue two contributions<br />

are attached the “Foreword” by the publisher from<br />

the first <strong>atw</strong> issue 1(1956) as well as the contribution “The<br />

Federal Republic of Germany and the international cooperation<br />

in the nuclear field” by former Federal Minister<br />

of Germany Franz Josef Strauss. As both contributions<br />

were originally published in German language, we will be<br />

publishing both the original version and an English translation.<br />

Different stages of the worldwide development of<br />

the nuclear industry right up to today as well as focal<br />

themes such as technology, politics and economy were decisive<br />

in the selection of these topics.<br />

On the occasion of the anniversary we also provide not<br />

only for historically interested persons, but also for today’s<br />

practitioners all <strong>atw</strong> issues published since 1956 digitalized<br />

and improved on data mediums. While reviewing the<br />

contents of the past years we realised, that already early on<br />

many facets of nuclear energy with a broad pool of helpful<br />

knowledge were dealt with. One example would certainly<br />

be the in times of “energy transition” strongly discussed<br />

“flexibility” in production; nuclear energy was already in<br />

the 1970s treaded in this context. The wheel is already invented<br />

and can be read, as many further topics, in the <strong>atw</strong>.<br />

We hope, that with the implementation of a new layout<br />

we found a balanced mix of a pleasing appearance and yet<br />

objective seriousness. We would be delighted to receive<br />

your comments, criticism and suggestions.<br />

Christopher Weßelmann<br />

– Editor in Chief –<br />

editorial@atomwirtschaft.com<br />

3<br />

EDITORIAL<br />

Editorial<br />

60 ı 


<strong>atw</strong> Vol. 60 (<strong>2<strong>01</strong>5</strong>) | Issue 1 ı January<br />

460<br />

EDITORIAL<br />

Liebe Leserin, lieber Leser,<br />

die Zahl 60 hat für die Kernenergielandschaft eine richtungsweisende Bedeutung: 60 Jahre sind heute die anerkannte<br />

und praktizierte technische Laufzeit von Leistungskernkraftwerken.<br />

Ursprünglich gestartet waren die ersten kommerziellen<br />

Anlagen mit einer genehmigten Betriebszeit von – mindestens<br />

– 40 Jahren. Weniger waren dabei technische Gründe<br />

und Perspektiven leitend, als vielmehr ein gesicherter Planungszeitraum<br />

für die Amortisation in die Investition der<br />

Anlagen. Regulatorisch wurde so z.B. im U.S.-Atomgesetz<br />

die Erstbetriebsgenehmigung auf 40 Jahre festgelegt – mit<br />

der Gesetzesoption einer Verlängerung von zunächst weiteren<br />

20 Jahren. In anderen Kernenergie nutzenden Staaten<br />

sind die Regularien teils ähnlich oder weichen sogar<br />

dahin gehend ab, dass unter der Prämisse eines sicheren<br />

Anlagenbetriebs eine zeitlich unbeschränkte Betriebsgenehmigung<br />

ausgesprochen wird. Schon in den frühen<br />

1980er-Jahren initiierte Programme zur Analyse von Alterungsprozessen<br />

in Kernkraftwerken zeigten, dass gemeinsam<br />

mit der kontinuierlichen Nachrüstung 60 Jahren<br />

Laufzeit technischer und sicherheitstechnischer State-ofthe-Art<br />

sind. Darauf basierend setzten die USA im Jahr<br />

2000 mit gleich fünf Genehmigungen für 60 Jahre Betrieb<br />

weltweit den ersten Meilenstein zu Kernkraftwerkslaufzeiten.<br />

Inzwischen besitzen 75 von 100 U.S.-Kernkraftwerken<br />

eine solche Lizenz und weitere Länder folgten dieser<br />

Praxis.<br />

Seit inzwischen 60 Jahren begleitet die <strong>atw</strong> – International<br />

Journal for Nuclear Power diese und alle weiteren<br />

Entwicklungen auf dem Gebiet der friedlichen Nutzung<br />

der Kernenergie. Gestartet war die <strong>atw</strong> als „die atomwirtschaft“<br />

im Januar 1956. Ihre Herausgeber schrieben zum<br />

Ersterscheinen der <strong>atw</strong> ins Stammbuch, „in sachlicher<br />

Klarheit über alle wirtschaftlichen Fragen der Kernumwandlung“<br />

zu berichten. Fünfzehn Jahre später wurde das<br />

Themenspektrum auch namentlich auf die „atomtechnik“<br />

ausgeweitet. Diesem Leitsatz der Sachlichkeit ist die <strong>atw</strong><br />

konsequent verbunden. Die internationalen Fachbeiträge,<br />

Kommentare und Dokumentationen in der <strong>atw</strong> zeigen dies<br />

in aller Deutlichkeit.<br />

Jubiläen sind Anlässe für Rückblicke. Doch lassen sich<br />

60 Jahre Entwicklung der friedlichen Nutzung der Kernenergie<br />

kaum in wenigen Worten zusammenfassen. Die<br />

Entwicklungen sind doch von Land zu Land zu verschieden.<br />

Während sich die Kernenergie in Deutschland aufgrund<br />

der politischen Beschlüsse nach Fukushima bislang<br />

einzigartig weltweit auf die Außerbetriebnahme und den<br />

Rückbau der Kernkraftwerke konzentrieren muss, sind<br />

weltweit Anlagen in Bau, die die Kernkraftwerksleistung<br />

in wenigen Jahren um 25 % ansteigen lassen werden.<br />

15 „Newcomer“-Staaten angekündigt, in die Kernkraftnutzung<br />

einzusteigen. Insgesamt auf 200 Neubauvorhaben ist<br />

so zu verweisen. Klimaschutz, Ressourcenschonung, Energieversorgungssicherheit<br />

und bezahlbare Energiepreise<br />

werden weltweit nicht an ideologischen Vorgaben eines<br />

Zeitgeistes gemessen, sondern an einfach erkennbaren<br />

Realitäten und Zusammenhängen.<br />

Redaktion und Verlag haben „60 Jahre <strong>atw</strong>“ zum Anlass<br />

genommen in der <strong>atw</strong>, zum einen nach vorne zu schauen<br />

und dies auch mit einem optischen Redesign deutlich zu<br />

machen. Weiterhin stehen die Inhalte der einzelnen Rubriken<br />

– Editorial, Kommentare, Fachartikel, Nachrichten<br />

und Mitteilungen von DAtF und KTG – im Fokus. Mit neuem<br />

Layout, Typografie und Farbe möchten wir die Lektüre<br />

der <strong>atw</strong> attraktiver und deutlicher gestalten. Den einzelnen<br />

Rubriken sind künftig eindeutige Farben zugeordnet,<br />

sodass Sie als Leser griffig die jeweiligen Schwerpunkte<br />

finden. <strong>atw</strong> als Marke bleibt erhalten mit einem Logo, das<br />

den Blick nach vorne auch optisch unterstreicht.<br />

Der historische Blickwinkel wird zum anderen nicht<br />

außer Acht gelassen. Jede Ausgabe der <strong>atw</strong> in <strong>2<strong>01</strong>5</strong> wird<br />

von einem historischen Beitrag begleitet – in dieser Ausgabe<br />

sind dies zwei, die „Geleitworte“ der Herausgeber aus<br />

der <strong>atw</strong> 1 (1956) sowie der Beitrag „Die Bundesrepublik<br />

und die internationale Zusammenarbeit auf dem Kernenergiegebiet“<br />

vom damaligen Bundesminister Franz Josef<br />

Strauss. Soweit die Beiträge in ihrer historischen Fassung<br />

in deutscher Sprache abgefasst waren, veröffentlichen wir<br />

sowohl das Original als auch eine englische Übersetzung.<br />

Bei der Auswahl der Themen waren die unterschiedlichen<br />

Phasen der weltweiten Kernenergieentwicklung bis heute<br />

sowie Schwerpunkte von Technik, Wirtschaft und Politik<br />

leitend.<br />

Zudem bieten wir anlässlich des Jubiläums nicht nur<br />

für den historisch Interessierten, sondern auch für den<br />

heutigen Praktiker die kompletten Jahrgänge der <strong>atw</strong> seit<br />

1956 digitalisiert und nachbearbeitet auf Datenträger an.<br />

Bei der Aufarbeitung der Jahrgänge wurde uns deutlich,<br />

dass viele Facetten der Kernenergie schon frühzeitig behandelt<br />

wurden, mit einem breiten Fundus an heute nützlichem<br />

Know-how. Ein Beispiel ist sicherlich die in Zeiten<br />

der „Energiewende“ allenthalben diskutierte „Flexibilität“<br />

in der Erzeugung; die Kernenergie wurde darauf schon in<br />

den 1970er-Jahren darauf getrimmt – dieses Rad ist schon<br />

erfunden und wie viele weitere Themen nachzulesen in<br />

der <strong>atw</strong>.<br />

Wir hoffen, mit der Umsetzung des neuen Layouts<br />

einen ausgewogenen Mix zwischen gefälligem Erscheinungsbild<br />

und weiterhin sachlicher Seriosität gefunden zu<br />

haben. Über Kommentare, Kritik und Anregungen würden<br />

wir uns sehr freuen!<br />

Christopher Weßelmann<br />

– Chefredakteur –<br />

editorial@atomwirtschaft.com<br />

Editorial<br />

60 ı 


Kommunikation und<br />

Training für Kerntechnik<br />

Suchen Sie die passende<br />

Weiterbildungsmaßnahme<br />

im Bereich Kerntechnik?<br />

Nutzen Sie das neue Seminarangebot der INFORUM mit interdisziplinär<br />

relevanten Fragestellungen vermittelt von ausgewiesenen Experten,<br />

die fachliche und didaktische Kompetenz verbinden.<br />

Die INFORUM-Seminare bieten nützliche Kenntnisse, die Sie und Ihre<br />

Mitarbeiterinnen und Mitarbeiter in der täglichen Praxis unterstützen.<br />

Wählen Sie aus folgenden Themen:<br />

a<br />

a<br />

a<br />

Atomrecht<br />

Medien<br />

Wissenstransfer<br />

Seminar Termin Ort<br />

Atomrecht – was Sie<br />

wissen müssen<br />

21.<strong>01</strong>.<strong>2<strong>01</strong>5</strong><br />

24.06.<strong>2<strong>01</strong>5</strong><br />

Berlin<br />

Medientraining 03.03. - 04.03.<strong>2<strong>01</strong>5</strong> Berlin<br />

Erfolgreicher Wissenstransfer<br />

in der Kerntechnik – Methoden<br />

und praktische Umsetzung<br />

Haben wir Ihr Interesse geweckt?<br />

3 Rufen Sie uns an: +49 30 498555-20<br />

11.03. - 12.03.<strong>2<strong>01</strong>5</strong><br />

04.11. - 05.11.<strong>2<strong>01</strong>5</strong><br />

Berlin<br />

Kontakt<br />

INFORUM<br />

Verlags- und Verwaltungsgesellschaft<br />

mbH<br />

Robert-Koch-Platz 4<br />

1<strong>01</strong>15 Berlin<br />

Liane Philipp<br />

Fon +49 30 498555-20<br />

Fax +49 30 498555-17<br />

presse@<br />

www. kernenergie.de


<strong>atw</strong> Vol. 60 (<strong>2<strong>01</strong>5</strong>) | Issue 1 ı January<br />

6<br />

Issue 1<br />

January <strong>2<strong>01</strong>5</strong><br />

CONTENTS<br />

14<br />

Overview of PHARE<br />

Projects Implemented<br />

in Romania<br />

| | Cover: A frosty cold winter day outside the Forsmark nuclear power plant. In the foreground the biotest basin and in the background<br />

reactor 1 and 2. Forsmark generates approximately one sixth of Sweden’s total electrical energy consumption per year.<br />

(Courtesy: Vattenfall AB)<br />

Editorial<br />

60 3<br />

60 4<br />

Contents 6<br />

Imprint 21<br />

Nuclear Power Plant Olkiluoto 3<br />

Containment Leakage Test Under<br />

Extreme Conditions 22<br />

Tobias Fleckenstein<br />

Abstracts | English 8<br />

Abstracts | German 10<br />

Inside Nuclear with NucNet<br />

EU 2030 Targets “Unachievable”<br />

Without Long-Term Nuclear<br />

Operation 12<br />

23<br />

NucNet and Maria van der Hoeven<br />

Calendar 13<br />

Operation and New Build<br />

Overview of PHARE Projects<br />

Implemented in Romania Between<br />

1997 and 2008 for Enhancing the Nuclear<br />

Safety Level 14<br />

Radian Sanda, Benoit Zerger,<br />

Giustino Manna and Brian Farrar<br />

Spotlight on Nuclear Law<br />

Paradigmenwechsel im Beförderungsrecht<br />

oder am „Flaschenhals“ 25<br />

Paradigm Shift in Transport Legislation<br />

or Rather at the „Bottleneck“ 25<br />

Hanns Näser<br />

| | Measuring equipment to assess tests for Okiluoto 3 project.<br />

(Courtesy: TÜV SÜD Industrie Service GmbH)<br />

Contents


<strong>atw</strong> Vol. 60 (<strong>2<strong>01</strong>5</strong>) | Issue 1 ı January<br />

7<br />

Energy Policy, Economy and Law<br />

Completeness Assessment of General<br />

Safety Requirements for Sodium-Cooled<br />

Fast Reactor Nuclear Design Utilizing<br />

Objective Provision Tree 27<br />

Namduk Suh, Moohoon Bae, Yongwon Choi,<br />

Bongsuk Kang and Huichang Yang<br />

KTG Inside 44<br />

60 th year <strong>atw</strong><br />

Foreword 50<br />

Zum Geleit 50<br />

Siegfried Balke, Heinrich Freiberger, Karl Hecht,<br />

W. Alexander Menne, Herbert Seidl and Kurt Sauerwein<br />

CONTENTS<br />

26<br />

The Federal Republic of Germany and<br />

the International Cooperation<br />

in the Nuclear Field 51<br />

Die Bundesrepublik und die<br />

internationale Zusammenarbeit<br />

auf dem Kernenergiegebiet 55<br />

Franz Josef Strauß<br />

| | Transport of nuclear material<br />

Research and Innovation<br />

RMB: The New Brazilian Multipurpose<br />

Research Reactor 30<br />

News 59<br />

Market data 64<br />

José Augusto Perrotta and Adalberto Jose Soares<br />

33<br />

63<br />

| | View of the Taishan site in an early stage of construction of<br />

Taishan unit 1. (Courtesy: Areva)<br />

| | Artist view of the RMB nuclear research centre.<br />

AMNT 2<strong>01</strong>4<br />

45 th Annual Meeting on Nuclear Technology:<br />

Key Topic | Reactor Operation, Safety –<br />

Report Part 3 34<br />

Nuclear Today<br />

IAEA Puts Cyber Security in Focus for<br />

Nuclear Facilities in <strong>2<strong>01</strong>5</strong> 66<br />

John Shepherd<br />

AMNT <strong>2<strong>01</strong>5</strong><br />

46 th Annual Meeting on Nuclear Technology:<br />

Programme 37<br />

AMNT <strong>2<strong>01</strong>5</strong> Registration Form . . . . . . . . . . . . Insert<br />

Contents


<strong>atw</strong> Vol. 60 (<strong>2<strong>01</strong>5</strong>) | Issue 1 ı January<br />

8<br />

ABSTRACTS | ENGLISH<br />

EU 2030 Targets “Unachievable”<br />

Without Long-Term Nuclear<br />

Operation<br />

NucNet and<br />

Maria van der Hoeven | Page 12<br />

Nuclear energy will continue to support<br />

greenhouse gas emission reduction targets<br />

until 2020, but without decisions on longterm<br />

operation of ageing reactors, it will be<br />

difficult for the EU to meet its 2030 targets,<br />

International Energy Agency (IEA) executive<br />

director Maria van der Hoeven, tells<br />

NucNet in an interview.<br />

The IEA has quite a few remarks and questions<br />

related to the EU goals of competitiveness,<br />

security of supply and sustainability.<br />

It is good to have these targets, but up until<br />

now the EU is missing the direct connection<br />

between the three goals. What is<br />

mostly needed to achieve the goals is to finalise<br />

the EU’s internal energy market.<br />

Secondly cost-effective climate and energy<br />

policies are needed because it is not only<br />

about climate and energy, but also about<br />

economic development and competitiveness.<br />

The ageing EU reactor fleet requires country-level<br />

and owner/operator-level decisions<br />

in the short term regarding plant<br />

safety regulations, plant upgrades, uprates,<br />

lifetime extensions and licence renewals.<br />

Upgrading and uprating existing<br />

nuclear plants is one of the cheapest ways<br />

of producing carbon-free electricity in the<br />

EU. Without long-term operation, the IEA<br />

expects nuclear capacity in the EU could<br />

fall by a factor of six by 2030 and that will<br />

make it more difficult to achieve the EU’s<br />

2030 climate targets.<br />

Public opinion is an important topic for<br />

the acceptance of all energy sources and<br />

it is different in all IEA member countries.<br />

Europe is very sensitive to almost all<br />

forms of energy, including wind turbines<br />

and solar panels. This is linked to a lack<br />

of information, so we need more and<br />

better transparency on information for<br />

people.<br />

Overview of PHARE Projects<br />

Implemented in Romania Between<br />

1997 and 2008 for Enhancing the<br />

Nuclear Safety Level<br />

Radian Sanda, Benoit Zerger,<br />

Giustino Manna and<br />

Brian Farrar | Page 14<br />

Through the Poland Hungary Aid for Reconstruction<br />

of the Economy (PHARE) programme,<br />

the European Commission (EC)<br />

supported the transition of the Eastern<br />

European states to the European market<br />

economy. PHARE was a pre-accession financial<br />

assistance programme which involved<br />

countries from Central and Eastern<br />

Europe that applied to become members of<br />

the European Union. The paper presents a<br />

synthesis of the projects carried out in Romania<br />

for enhancing nuclear safety by consolidating<br />

key areas such as Regulatory<br />

Activities, Radioactive Waste Management<br />

and On-Site assistance, in order to fulfil the<br />

requirements for accession to the European<br />

Union.<br />

Statistical considerations on the impact of<br />

the projects are also proposed and an analysis<br />

of the methodology of intervention is<br />

made.<br />

Nuclear Power Plant Olkiluoto 3<br />

Containment Leakage Test Under<br />

Extreme Conditions<br />

Tobias Fleckenstein | Page 22<br />

Modern nuclear power plants place high<br />

demands on the design and execution of<br />

safety checks. TÜV SÜD supported the<br />

containment leakage test for the largestcapacity<br />

third generation nuclear power<br />

plant in the world – Olkiluoto 3 in Finland.<br />

The experts successfully met the challenges<br />

presented by exceptional parameters<br />

of the project. The containment of<br />

Olkiluoto 3 is unique in that the vessel’s<br />

volume is 80,000 m 3 while measurements<br />

were carried out over a period of ten days.<br />

To execute the test, 75 temperature and 15<br />

humidity sensors had to be installed and<br />

correctly interlinked by more than ten<br />

kilometres of cable. These instruments<br />

also needed to withstand an absolute<br />

pressure of 6 bar, ambient temperatures of<br />

30° C and high levels of humidity. These<br />

conditions required comprehensive preparation<br />

and a high amount of qualification<br />

tests. Parts of the qualifications were<br />

carried out at the autoclave system of the<br />

Technical University in Munich, Germany,<br />

where the project test conditions could be<br />

simulated. The software required to determine<br />

the tests was developed by TÜV<br />

SÜD and verified by German’s national<br />

accreditation body DAkkS under ISO<br />

17025.<br />

TÜV SÜD enabled the test schedule to continue<br />

without delay by analysing all recorded<br />

data continuously on site, including<br />

pressure, temperature, humidity and leakage<br />

mass flow curves. With the comprehensive<br />

preparation, data acquisition system<br />

recording measurements continuously<br />

and the on-time result calculation, all components<br />

of the leak-tightness assessment<br />

were successfully completed in accordance<br />

with requirements.<br />

Paradigm Shift in Transport Legislation<br />

or Rather at the „Bottleneck“<br />

Hanns Näser | Page 25<br />

In the year just started significant decisions<br />

with considerable consequences by the<br />

Federal Constitutional Court and the Federal<br />

Administrative Court in the field of<br />

nuclear law are expected. Especially the<br />

decision with regards to „nuclear phaseout“<br />

within the 13th amendment of the<br />

Atomic Energy Act is being eagerly expected,<br />

as with its far-reaching consequences<br />

also fundamental constitutional questions<br />

need to be answered.<br />

The Federal Administrative Court will need<br />

to decide on the question, whether she admits<br />

the appeal against the Brunsbüttel<br />

decision by the Higher Administrative<br />

Court Schleswig-Holstein (HAC), which<br />

from the view of claimant shifted the fundamental<br />

basis of demarcation of responsibilities<br />

between the executive and judiciary<br />

power.<br />

In comparison to these fundamental decisions<br />

the awaited decision by the HAC on<br />

nuclear transport legislation seems of subordinate<br />

importance, although she will<br />

proceed with a paradigm shift in the legal<br />

area. The decision deals with the question<br />

as to whether and when a right of action<br />

from a third party within the nuclear transport<br />

legislation can be accepted or more<br />

precisely under which preconditions a<br />

third party has clear standing against a<br />

nuclear transport authorisation.<br />

As the site selection law (issued on 23 July<br />

2<strong>01</strong>3 BGBI I p. 2552) excludes the recirculation<br />

of vitrified waste block canisters<br />

from reprocessing spent fuel elements to<br />

the transport cask storage facility Gorleben,<br />

the decision by the HAC Lüneburg<br />

for this site will only be relevant for<br />

present unpredictable transportations<br />

from the transport cask storage facility<br />

Gorleben to a final repository. If necessary<br />

interest to seek a declaratory judgment<br />

for declaratory action, in concreto danger<br />

of recurrence will be approved, is another<br />

matter.<br />

Completeness Assessment of<br />

General Safety Requirements for<br />

Sodium-Cooled Fast Reactor Nuclear<br />

Design Utilizing Objective Provision<br />

Tree<br />

Namduk Suh, Moohoon Bae,<br />

Yongwon Choi, Bongsuk Kang and<br />

Huichang Yang | Page 27<br />

A prototype sodium-cooled fast reactor<br />

(SFR) of 150 MWe is under development in<br />

Korea. The designer is planning to apply<br />

the licensing for construction permit by<br />

2020. To prepare the future licensing review,<br />

we are developing general safety requirements<br />

for SFR. The requirements are<br />

developed first by evaluating the applicability<br />

of the current requirements of light<br />

water reactor (LWR) to SFR and then taking<br />

into account other international requirements<br />

available. In this way, we have<br />

developed a draft general safety requirements<br />

with 59 articles. The LWR safety<br />

requirements are coming from the accumulated<br />

experiences of long-year licensing<br />

and operation, but we do not have sufficient<br />

experiences corresponding for SFR,<br />

so we need a systematic and integral approach<br />

to complement our developed requirements<br />

for SFR. For this purpose, we<br />

have developed an objective provision tree<br />

for the safety function of reactivity control<br />

and applied it in assessing the completeness<br />

of our draft requirements developed.<br />

In this way, we could confirm that our<br />

draft requirements include all the requirements<br />

to prevent the mechanisms that<br />

could challenge the safety function of reactivity<br />

control.<br />

Abstracts | English


<strong>atw</strong> Vol. 60 (<strong>2<strong>01</strong>5</strong>) | Issue 1 ı January<br />

RMB: The New Brazilian<br />

Multipurpose Research Reactor<br />

José Augusto Perrotta and<br />

Adalberto Jose Soares | Page 30<br />

Brazil has four research reactors (RR) in<br />

operation: IEA-R1, a 5 MW pool type RR;<br />

IPR-R1, a 100 kW TRIGA type RR; ARGO-<br />

NAUTA, a 500 W Argonaut type RR, and<br />

IPEN/MB-<strong>01</strong>, a 100 W critical facility. The<br />

first three were constructed in the 50’s and<br />

60’s, for teaching, training, and nuclear<br />

research, and for many years they were<br />

the basic infrastructure for the Brazilian<br />

nuclear developing program. The last,<br />

IPEN/MB-<strong>01</strong>, is the result of a national<br />

project developed specifically for qualification<br />

of reactor physics codes. Considering<br />

the relative low power of Brazilian research<br />

reactors, with exception of IEAR1,<br />

none of the other reactors are feasible for<br />

radioisotope production, and even IEA-R1<br />

has a limited capacity. As a consequence,<br />

since long ago, 100% of the Mo-99 needed<br />

to attend Brazilian nuclear medicine services<br />

has been imported. Because of the<br />

high dependence on external supply, the<br />

international Moly-99 supply crisis that<br />

occurred in 2008/2009 affected significantly<br />

Brazilian nuclear medicine services,<br />

and as presented in previous IAEA events<br />

[1], in 2<strong>01</strong>0 Brazilian government formalized<br />

the decision to build a new research<br />

reactor. The new reactor named RMB<br />

(Brazilian Multipurpose Reactor) will be<br />

a 30 MW open pool type reactor, using<br />

low enriched uranium fuel. The facility<br />

will be part of a new nuclear research<br />

centre, to be built about 100 kilometres<br />

from São Paulo city, in the southern part<br />

of Brazil. The new nuclear research centre<br />

will have several facilities, to use thermal<br />

and cold neutron beams; to produce radioisotopes;<br />

to perform neutron activation<br />

analysis; and to perform irradiations<br />

tests of materials and fuels of interest for<br />

the Brazilian nuclear program. An additional<br />

facility will be used to store, for at<br />

least 100 years, all the fuel used in the reactor.<br />

The paper describes the main characteristics<br />

of the new centre, emphasising<br />

the research reactor and giving a brief<br />

description of the laboratories that will be<br />

constructed, It also presents the status of<br />

the project.<br />

AMNT 2<strong>01</strong>4: Key Topic |<br />

Reactor Operation, Safety –<br />

Report Part 3<br />

| Page 34<br />

Summary report on the following sessions<br />

of the Annual Conference on Nuclear<br />

Technology held in Frankfurt, 6 to 8 May<br />

2<strong>01</strong>4:<br />

• Reactor Operation, Safety: Radiation<br />

Protection (Angelika Bohnstedt)<br />

• Competence, Innovation, Regulation:<br />

Fusion Technology – Optimisation Steps<br />

in the ITER Design (Thomas Mull)<br />

• Competence, Innovation, Regulation:<br />

Education, Expert Knowledge, Knowledge<br />

Transfer (Jörg Starflinger)<br />

The other Sessions of the Key Topics “Reactor<br />

Operation, Safety”, “Competence, Innovation,<br />

Regulation” and “Fuel, Decommissioning<br />

& Disposal” have been covered<br />

in <strong>atw</strong> 10 and 12 (<strong>2<strong>01</strong>5</strong>) and will be covered<br />

in further issues of <strong>atw</strong>.<br />

60 th year <strong>atw</strong>:<br />

Foreword of the First Issue in 1956<br />

Siegfried Balke, Heinrich Freiberger,<br />

Karl Hecht, W.A. Menne,<br />

Herbert Seidl und<br />

Kurt Sauerwein | Page 50<br />

The present journal will in detail and with<br />

objective clarity report on all economic<br />

questions with regard to nuclear transformation.<br />

The information will be extensive<br />

and concentrated and will cover economic<br />

contexts including news, legal questions<br />

as well as questions on operational<br />

and social safety. Especially its documentation,<br />

which sighted and reliably provides a<br />

pictures of the happenings in Germany and<br />

the most important countries in the world,<br />

will inform the reader quick and briefly in<br />

an intelligible language.<br />

Thus the ATOMWIRTSCHAFT should serve<br />

above all a serious and concentrated reporting<br />

and should be a conscientious advisor<br />

on a new promising field of work of<br />

science and technics beyond German<br />

speaking regions.<br />

The Federal Republic of Germany<br />

and the International Cooperation<br />

in the Nuclear Field<br />

Franz Josef Strauß | Page 51<br />

The questions of international cooperation<br />

in the field of nuclear energy for<br />

peaceful purposes arise the increasing interest<br />

of all political and economic interested<br />

parties of our nation. This rising<br />

sympathy reflects the awareness, that due<br />

to the fast development of nuclear energy,<br />

in detail a hardly assessable process, a new<br />

technical revolution is in the offing which<br />

for the further economic development of<br />

the European states and not least our<br />

country itself will be in view of the current<br />

inferior position in comparison to the<br />

leading nuclear powers, of paramount importance.<br />

By all necessity of catching up<br />

the scientific and technical development<br />

at national level, the conviction is more<br />

and more confirmed that joint efforts both<br />

in the European and global area are necessary<br />

to make full use of the tremendous<br />

possibilities of nuclear energy for peaceful<br />

progress.<br />

It is appropriate and valuable, already for<br />

determining the own point of view for the<br />

further participation in international cooperation<br />

within the nuclear field, to gain<br />

from time to time an overview and to take<br />

stock on existing organisation as well as<br />

different projects and plans. For this purpose<br />

the following lines are intended,<br />

without demanding completeness in all<br />

details. I may initially pay attention to<br />

the entirely or predominant economic<br />

committees for cooperation followed by<br />

bilateral and multilateral facts and projects.<br />

IAEA Puts Cyber Security in Focus for<br />

Nuclear Facilities in <strong>2<strong>01</strong>5</strong><br />

John Shepherd | Page 66<br />

Later in <strong>2<strong>01</strong>5</strong> the International Atomic Energy<br />

Agency (IAEA) will convene a special<br />

conference to discuss computer security,<br />

in the wake of cyber attacks on global financial<br />

institutions and government agencies<br />

that were increasingly in the news.<br />

According to the IAEA, the prevalence of<br />

IT security incidents in recent years involving<br />

the Stuxnet malware “demonstrated<br />

that nuclear facilities can be susceptible<br />

to cyber attack”. The IAEA said<br />

this and other events have significantly<br />

raised global concerns over potential vulnerabilities<br />

and the possibility of a cyber<br />

attack, or a joint cyber-physical attack,<br />

that could impact on nuclear security.<br />

The IAEA has correctly identified that the<br />

use of computers and other digital electronic<br />

equipment in physical protection<br />

systems at nuclear facilities, as well as in<br />

facility safety systems, instrumentation,<br />

information processing and communication,<br />

“continues to grow and presents an<br />

ever more likely target for cyber attack”.<br />

The agency’s Vienna conference, to be<br />

held in June, will review emerging trends<br />

in computer security and areas that may<br />

still need to be addressed. The meeting<br />

follows a declaration of ministers of IAEA<br />

member states in 2<strong>01</strong>3 that called on the<br />

agency to help raise awareness of the<br />

growing threat of cyber attacks and their<br />

potential impact on nuclear security.<br />

The conference is being organised “to<br />

foster international cooperation in computer<br />

security as an essential element of<br />

nuclear security”, the IAEA said.<br />

Details of the IAEA’s ‘International Conference<br />

on Computer Security in a Nuclear<br />

World: Expert Discussion and Exchange’<br />

are on the ‘meetings’ section of the<br />

agency’s web site.<br />

9<br />

ABSTRACTS | ENGLISH<br />

Abstracts | English


<strong>atw</strong> Vol. 60 (<strong>2<strong>01</strong>5</strong>) | Issue 1 ı January<br />

10<br />

ABSTRACTS | GERMAN<br />

Interview: EU-2030-Ziele ohne<br />

langfristigen Betrieb der<br />

Kernkraftwerke „unerreichbar“<br />

NucNet und Maria van der Hoeven | Seite 12<br />

Die Kernenergie wird in Europa auch weiterhin,<br />

zumindest bis 2020, einen wichtigen<br />

Anteil bei der Reduktion von Treibhausgasemissionen<br />

leisten. Mit zunehmendem Betriebsalter<br />

der Reaktoren kann es allerdings<br />

problematisch werden, die von der EU proklamierten<br />

2030-Ziele zu erreichen. Dies<br />

fasst die Direktorin der Internationalen Energieagentur<br />

(IEA), Maria van der Hoeven, in<br />

einem Interview mit NucNet zusammen.<br />

Zu den Zielen der EU, Wettbewerbsfähigkeit,<br />

Versorgungssicherheit mit Energie<br />

und Nachhaltigkeit zu erreichen, hat die<br />

IEA einige Anmerkungen und Fragen. Die<br />

Ziele an sich sind gut und richtig, aber es<br />

fehlt bei der Umsetzung eine direkte Koppelung<br />

zwischen den einzelnen Zielen. Vor<br />

allem sieht die IEA in der Realisierung des<br />

Energiebinnenmarktes der Europäischen<br />

Union eine wesentliche Voraussetzung zur<br />

Zielerfüllung. Zweitens ist eine kosteneffiziente<br />

Klima- und Energiepolitik notwendig,<br />

da es nicht allein losgelöst um Klimaund<br />

Energiepolitik geht, sondern auch um<br />

wirtschaftliche und soziale Weiterentwicklung<br />

und Wettbewerbsfähigkeit.<br />

Das zunehmende Betriebsalter der Kernkraftwerke<br />

in der EU erfordert auf Ebene<br />

der Staaten und bei den Anlagenbetreibern<br />

kurzfristige Entscheidungen zum Umgang<br />

mit Sicherheitsanforderungen, Leistungserhöhungen,<br />

Nachrüstungen, Lebensdauer<br />

verlängernden Maßnahmen und möglichen<br />

Verlängerungen von Betriebsgenehmigungen.<br />

Dabei sind Leistungserhöhungen bei<br />

laufenden Kernkraftwerken der kostengünstigste<br />

Weg zur Vermeidung von klimawirksamen<br />

Emissionen in der EU. Ohne<br />

Langfristbetrieb könnte der Anteil der Kernenergie<br />

in der EU bis 2030 erheblich fallen<br />

– bis auf ein Sechstel der heutigen Kapazität<br />

–, was mit erheblichen Problemen bei der<br />

Erreichung der EU-2030-Klimaziele verbunden<br />

sein dürfte.<br />

Die „öffentliche Meinung“ ist ein wichtiges<br />

Thema der Akzeptanz aller Energieträger,<br />

wobei diese in den einzelnen IEA-Mitgliedstaaten<br />

unterschiedlich ausgeprägt ist. Die<br />

Europäer sind inzwischen sehr sensibel in<br />

allen Fragen der Energiegewinnung und<br />

-nutzung, was auch Wind und Sonne mit einschließt.<br />

Eine Ursache sind fehlende Informationen.<br />

Transparenz und Information der<br />

Menschen sind also ein wichtiger Baustein<br />

zum Erfolg der einzelnen Energieträger.<br />

Übersicht der in Rumänien zwischen<br />

1997 und 2008 für die Verbesserung<br />

der nuklearen Sicherheit Ebene<br />

umgesetzten PHARE-Projekte<br />

Radian Sanda, Benoit Zerger,<br />

Giustino Manna und Brian Farrar | Seite 14<br />

Im Rahmen des Programms Poland Hungary<br />

Aid for Reconstruction of the Economy<br />

(PHARE) hat die Europäische Kommission<br />

(EC) die Integration der osteuropäischen<br />

Staaten in das Marktsystem der<br />

Europäischen Union (EU) unterstützt. PHA-<br />

RE war ein finanzielles Konzept für zentral-<br />

und osteuropäische Staaten, die die<br />

Mitgliedschaft in der Union beantragt hatten.<br />

Das Programm unterstützte die Länder<br />

vor ihrem Beitritt zur EU.<br />

Der Beitrag fasst die Projekte zur Unterstützung<br />

der nuklearen Sicherheit in Rumänien<br />

zusammen. Wesentliche Handlungsfelder<br />

waren der Ausbau der regulatorischen Infrastruktur,<br />

der Umgang mit radioaktiven Abfällen<br />

sowie die Vor-Ort-Unterstützung, mit<br />

dem o.o. Ziel, die Voraussetzungen für einen<br />

Beitritt zur EU auf diesem Sektor zu erfüllen.<br />

Unter anderem erfolgt eine statistische<br />

Auswertung der Erfolge der einzelnen Projekte<br />

sowie eine Analyse der angewandten<br />

Methoden bei ihrer Umsetzung.<br />

Kernkraftwerk Olkiluoto 3<br />

Leckagetest für ein Containment<br />

unter extremen Bedingungen<br />

Tobias Fleckenstein | Seite 22<br />

Moderne Kernkraftwerke stellen hohe Anforderungen<br />

an die Planung und Ausführung<br />

von Sicherheitstests. TÜV SÜD hat<br />

den Leckagetest des Sicherheitsbehälters<br />

von Olkiluoto 3 in Finnland begleitet. Das<br />

weltweit größte Kernkraftwerk der dritten<br />

Generation hat einen Sicherheitsbehälter<br />

mit einem Volumen von 80,000 m 3 .<br />

Der Test erforderte 75 Temperatur- und 15<br />

Feuchtigkeitssensoren, die installiert und<br />

mit Kabeln von einer Gesamtlänge von mehr<br />

als zehn Kilometern korrekt verbunden werden<br />

mussten. Weiterhin mussten die Testgeräte<br />

zehn Tage einem absoluten Druck von 6<br />

Bar, Temperaturen von 30° C und einer hohen<br />

Luftfeuchte standhalten. Dies erforderte<br />

eine umfangreiche Vorbereitung und eine<br />

Vielzahl von Qualifizierungstests. Ein Teil<br />

dieser Qualifizierungstests wurde im Autoklav<br />

der Technischen Universität München<br />

vorgenommen, wo die Testbedingungen simuliert<br />

werden konnten. Die für die Durchführung<br />

der Prüfung erforderliche Software<br />

wurde von TÜV SÜD entwickelt und von der<br />

Deutschen Akkreditierungsstelle (DAkkS)<br />

nach ISO 17025 verifiziert.<br />

TÜV SÜD ermöglichte die verzugsfreie<br />

Durchführung des gesamten Prüfablaufs,<br />

da die aufgezeichneten Daten laufend direkt<br />

vor Ort ausgewertet wurden, darunter<br />

Druck, Temperatur, Luftfeuchte und Massenstrom.<br />

Unterstützt durch umfangreiche<br />

Vorbereitung, die kontinuierliche Datenerfassung<br />

sowie der laufenden Auswertung<br />

der Messdaten konnten alle Anforderungen<br />

erfüllt und alle Komponenten des Leckagetests<br />

erfolgreich abgeschlossen werden.<br />

Paradigmenwechsel im Beförderungsrecht<br />

oder am „Flaschenhals“<br />

Hanns Näser | Seite 25<br />

Im gerade begonnenen Jahr sind höchst<br />

bedeutsame Entscheidungen des Bundesverfassungsgerichts<br />

und des Bundesverwaltungsgerichts<br />

auf dem Gebiet des Atomrechts<br />

von erheblicher Tragweite zu erwarten.<br />

Insbesondere die Entscheidung des<br />

Bundesverfassungsgerichts zu dem mit der<br />

13. Novelle zum Atomgesetz erfolgten<br />

„Atomausstieg“ wird mit großer Spannung<br />

erwartet, weil neben den mit den Entscheidungen<br />

verbundenen weitreichenden Folgen<br />

auch grundsätzliche Fragen der Verfassung<br />

zu beantworten sind.<br />

Für das Bundesverwaltungsgericht steht die<br />

Frage zur Entscheidung an, ob sie die Revision<br />

gegen die Brunsbüttel-Entscheidung<br />

des Oberverwaltungsgerichts (OVG) Schleswig-Holstein<br />

zulässt, die aus Sicht der Kläger<br />

wesentliche Grundlagen der Verantwortungsabgrenzung<br />

zwischen Exekutive<br />

und Judikative verschoben hat.<br />

Gegenüber diesen grundlegenden Entscheidungen<br />

ist die erwartete Entscheidung<br />

des OVG Lüneburg zum nuklearen Transportrecht<br />

von untergeordneter Bedeutung, obwohl<br />

sie auf diesem Rechtsgebiet einen Paradigmenwechsel<br />

vollziehen wird. Es geht bei<br />

dieser Entscheidung um die Frage, ob und<br />

wann eine Klagebefugnis eines Dritten im<br />

nuklearen Transportrecht anerkannt werden<br />

kann, genauer, unter welchen Voraussetzungen<br />

ein Dritter gegen eine atomrechtliche<br />

Beförderungsgenehmigung klagebefugt ist.<br />

Da das Standortauswahlgesetz (vom 23. Juli<br />

2<strong>01</strong>3 BGBl I S. 2553) die Rückführung<br />

von Glaskokillen aus der Wiederaufarbeitung<br />

von abgebrannten Brennelementen<br />

zum Transportbehälterlager Gorleben ausschließt,<br />

wird die Entscheidung des OVG<br />

Lüneburg für diesen Standort nur noch für<br />

gegenwärtige nicht absehbare Transporte<br />

vom Transportbehälterlager Gorleben in ein<br />

Endlager Relevanz haben können. Ob damit<br />

das für eine Feststellungsklage erforderliche<br />

Feststellungsinteresse, in concreto<br />

Wiederholungsgefahr bejaht werden kann,<br />

steht auf einem anderen Blatt.<br />

Gesamtbeurteilung der grundlegenden<br />

Sicherheitsanforderungen<br />

für natriumgekühlte Schnelle<br />

Reaktoren unter Einsatz der<br />

Objective-Provision-Tree-Methode<br />

Namduk Suh, Moohoon Bae,<br />

Yongwon Choi, Bongsuk Kang und<br />

Huichang Yang | Seite 27<br />

In der Republik Korea befindet sich der Prototyp<br />

eines natriumgekühlten schnellen Reaktors<br />

(SFR) mit 150 MWe Leistung in der<br />

Entwicklung. Der Entwickler plant, die Genehmigung<br />

für den Bau dieser Anlage bis<br />

zum Jahr 2020 zu beantragen und zu erhalten.<br />

Für den zukünftigen Genehmigungsprozess<br />

wurden grundsätzliche Sicherheitsanforderungen<br />

für SFR-Anlagen entwickelt.<br />

Die Anforderungen berücksichtigen in einem<br />

ersten Schritt die mögliche Übertragung<br />

der vorhandenen Anforderungen für<br />

Leichtwasserreaktoren auf den SFR. Dabei<br />

werden auch internationale Erfahrungen<br />

mit berücksichtigt. Ein erster Entwurf für<br />

die Sicherheitsanforderungen mit 59 Kapiteln<br />

wurde vorgelegt.<br />

Die heutigen Sicherheitsanforderungen für<br />

Leichtwasserreaktoren basieren auch auf<br />

umfassenden Erfahrungen mit Betrieb und<br />

Genehmigung. Solche liegen für SFR-Anlagen<br />

nicht vor. Es wurde daher ein systematischer<br />

und umfassender Ansatz entwickelt,<br />

Abstracts | German


<strong>atw</strong> Vol. 60 (<strong>2<strong>01</strong>5</strong>) | Issue 1 ı January<br />

um die Sicherheitsanforderungen für<br />

einen SFR auszuarbeiten.<br />

Für die Reaktivitätskontrolle wurde ein Ereignisbaum<br />

entwickelt und als Grundlage in<br />

die Sicherheitsanforderungen eingearbeitet.<br />

Es konnte gezeigt werden, dass die damit<br />

vorliegenden Anforderungen an die Reaktivitätskontrolle<br />

alle Einflussfaktoren berücksichtigen<br />

und somit ausreichend sind.<br />

Der neue Mehrzweckforschungsreaktor<br />

für Brasilien<br />

José Augusto Perrotta und<br />

Adalberto Jose Soares | Seite 30<br />

Brasilien verfügt derzeit über vier in Betrieb<br />

befindliche Forschungsreaktoren:<br />

IEA-R1, eine 5-MW-Pool-Anlage; IPR-R1,<br />

eine 100-kW-TRIGA-Typ-Anlage; ARGO-<br />

NAUTA, eine 500-W-Argonaut-Anlage und<br />

IPEN/MB-<strong>01</strong>, eine 100-W-Kritische-Anordnung.<br />

Die drei erstgenannten wurden in<br />

den 1950er- und 1960er-Jahren für Unterrichts-,<br />

Ausbildungs- und Forschungszwecke<br />

gebaut. Sie bilden die Basis der Infrastruktur<br />

des brasilianischen Nuklearprogramms.<br />

Die Anlage IPEN/MB-<strong>01</strong> ist national<br />

entwickelt worden, um speziell Reaktorphysik-Codes<br />

zu qualifizieren.<br />

Abgesehen vom IEA-R1 sind aufgrund der<br />

geringen thermischen Leistungen bei den<br />

brasilianischen Anlagen keine Möglichkeiten<br />

zur Herstellung von Radioisotopen vorhanden.<br />

Zudem sind die Produktionskapazitäten<br />

des IEA-R1 begrenzt. Als Konsequenz<br />

wird der Bedarf an Mo-99 in der Nuklearmedizin<br />

zu 100 % durch Importe gedeckt.<br />

Aufgrund dieser hohen Abhängigkeit<br />

und der Mo-99-Versorgungskrise in den<br />

Jahren 2008/2009 hatte die brasilianische<br />

Regierung in 2<strong>01</strong>0 den Beschluss zum Bau<br />

und Betrieb eines neuen Forschungsreaktors<br />

gefasst. Der neue Reaktor mit dem Namen<br />

RMB (Brazilian Multipurpose Reactor)<br />

wird als Pool-Anlage ausgeführt sein, 30<br />

MW thermische Leistung besitzen und<br />

niedrig angereichertes Uran als Kernbrennstoff<br />

nutzen. Der Reaktor wird Teil eines<br />

neuen Forschungszentrums rund 100 km<br />

von Sao Paulo entfernt im südlichen Landesteil<br />

von Brasilien sein. Das neue Forschungszentrum<br />

wird eine Reihe von Einrichtungen<br />

umfassen, um thermische und<br />

kalte Neutronen zu nutzen, Radioisotope<br />

herzustellen, Neutronenaktivierungsanalysen<br />

sowie Bestrahlungstest and Werkstoffen<br />

und Kernbrennstoff durchzuführen. Zudem<br />

wird ein Zwischenlager für den Kernbrennstoff<br />

des Forschungsreaktors eingerichtet.<br />

Der genutzte Kernbrennstoff soll hier für<br />

100 Jahre zwischengelagert werden.<br />

Forschungsreaktor sowie die Einrichtungen<br />

des Forschungszentrums werden detailliert<br />

vorgestellt.<br />

Jahrestagung Kerntechnik 2<strong>01</strong>4:<br />

Berichterstattung zu den<br />

Tech nischen Sitzungen – Teil 3<br />

| Seite 34<br />

Zusammenfassende Berichte zu den Technischen<br />

Sitzungen der Jahrestagung Kerntechnik<br />

2<strong>01</strong>4 (Frankfurt, 6. bis 8. Mai<br />

2<strong>01</strong>4) der Technischen Sitzungen<br />

• Reactor Operation, Safety: Radiation<br />

Protection (Angelika Bohnstedt)<br />

• Competence, Innovation, Regulation:<br />

Fusion Technology – Optimisation Steps<br />

in the ITER Design (Thomas Mull)<br />

• Competence, Innovation, Regulation:<br />

Education, Expert Knowledge, Knowledge<br />

Transfer (Jörg Starflinger)<br />

Berichte zu den weiteren Key Topics “Reactor<br />

Operation, Safety”, “Competence, Innovation,<br />

Regulation” and “Fuel, Decommissioning<br />

& Disposal” sind in den Ausgabe<br />

10 und 12 (2<strong>01</strong>4) der <strong>atw</strong> erschienen<br />

bzw. werden in späteren Ausgaben der <strong>atw</strong><br />

veröffentlicht.<br />

60 th year <strong>atw</strong>:<br />

Zum Geleit der ersten Ausgabe 1956<br />

Siegfried Balke, Heinrich Freiberger,<br />

Karl Hecht, W.A. Menne,<br />

Herbert Seidl und Kurt Sauerwein | Seite 50<br />

Die vorliegende Zeitschrift will in sachlicher<br />

Klarheit umfassend über alle wirtschaftlichen<br />

Fragen der Kernumwandlung<br />

berichten. Die Unterrichtung wird umfassend<br />

und konzentriert sein und sich von<br />

der Behandlung der wirtschaftlichen Zusammenhänge<br />

einschließlich der Nachrichtengebung<br />

bis zu den Fragen der<br />

Rechtsordnung und der betrieblichen wie<br />

sozialen Sicherheit erstrecken. Insbesondere<br />

ihre Dokumentation, die gesichtet<br />

und zuverlässig ein Bild des Geschehens in<br />

Deutschland und in den wichtigsten Ländern<br />

der Welt gibt, wird den Leser schnell<br />

und knapp in verständlicher Sprache<br />

unterrichten.<br />

So soll DIE ATOMWIRTSCHAFT der ernsthaften<br />

und vor allem konzentrierten Berichterstattung<br />

dienen und über das deutsche<br />

Sprachgebiet hinaus ein gewissenhafter Berater<br />

auf einem neuen, zukunftsreichen<br />

Arbeitsfeld von Wirtschaft und Technik sein.<br />

Die Bundesrepublik und die<br />

internationale Zusammenarbeit<br />

auf dem Kernenergiegebiet<br />

Franz Josef Strauß | Seite 55<br />

Den Fragen internationaler Zusammenarbeit<br />

auf dem Gebiete der Kernenergie für<br />

friedliche Zwecke wendet sich in steigendem<br />

Maße das Interesse aller politisch und<br />

wirtschaftlich interessierten Kreise unseres<br />

Volkes zu. Diese wachsende Anteilnahme<br />

entspricht der Erkenntnis, daß sich durch<br />

die Entwicklung der Kernenergie in raschem,<br />

im einzelnen kaum übersehbarem<br />

Ablauf eine neue technische Revolution<br />

anbahnt, die für die weitere wirtschaftliche<br />

Entwicklung der europäischen Staaten<br />

und dabei nicht zuletzt unseres Vaterlandes<br />

angesichts des augenblicklichen Rückstandes<br />

gegenüber den führenden Atommächten<br />

von ausschlaggebender Bedeutung<br />

sein wird.<br />

Immer mehr vertieft sich auch die Überzeugung,<br />

daß – bei aller Notwendigkeit, den<br />

Anschluß an die wissenschaftliche und technische<br />

Entwicklung im nationalen Bereich<br />

weitmöglichst zu gewinnen – sowohl im<br />

europäischen als auch im weltweiten Raum<br />

gemeinsame Anstrengungen notwendig<br />

sind, um die ungeheueren Möglichkeiten<br />

der Kernenergie für den friedlichen Fortschritt<br />

voll auszuschöpfen.<br />

Es ist, schon um den eigenen Standpunkt für<br />

die weitere Beteiligung an der internationalen<br />

Zusammenarbeit auf dem Kernenergiegebiet<br />

festzulegen, zweckmäßig und wertvoll,<br />

von Zeit zu Zeit einen Überblick über<br />

die bestehenden Einrichtungen sowie die<br />

verschiedenen Vorhaben und Pläne zu gewinnen<br />

und eine gewisse Zwischenbilanz zu<br />

ziehen. Diesem Zwecke sollen, ohne Anspruch<br />

auf Vollständigkeit in allen Einzelheiten<br />

zu erheben, die nachstehenden Zeilen<br />

dienen. Ich darf dabei zunächst auf die<br />

ganz oder überwiegend wissenschaftlichen<br />

Gremien der Zusammenarbeit und sodann<br />

auf die bilateralen und multilateralen Gegebenheiten<br />

und Vorhaben eingehen.<br />

Cyber Security von Nuklearanlagen<br />

in <strong>2<strong>01</strong>5</strong> im Fokus der IAEO<br />

John Shepherd | Seite 66<br />

Im Jahresverlauf <strong>2<strong>01</strong>5</strong> wird die Internationale<br />

Atomenergie-Organisation (IAEO) zu<br />

einer speziellen Konferenz zum Thema<br />

„Computersicherheit“ einladen. Die IAEA<br />

sieht aufgrund von Cyber-Attacken auf Finanzeinrichtungen<br />

und Regierungsbehörden<br />

bei diesem Thema auch für den Nuklearsektor<br />

einen besonderen Bedarf.<br />

Die IAEO führt dazu an, dass in den vergangenen<br />

Jahren Ereignisse mit Beeinträchtigung<br />

der IT-Sicherheit bei Nuklearanlagen,<br />

wie der STUXNET-Attacke, gezeigt<br />

haben, dass auch diese für Cyber-Angriffe<br />

anfällig sein können.<br />

Entsprechend sieht die IAEO einen wachsenden<br />

Handlungsbedarf, da kerntechnische<br />

Anlagen bei weiter zunehmenden Anwendungen<br />

von Computersystemen und<br />

weiteren digitalen Einrichtungen vermehrt<br />

zum möglichen Ziel von Cyber-Attacken<br />

oder kombinierten Cyber-Physischen-Attacken<br />

werden können.<br />

Die für Juni <strong>2<strong>01</strong>5</strong> in Wien geplante Konferenz<br />

soll sich mit den aktuellen Trends der<br />

Computersicherheit sowie möglichen zukünftigen<br />

Themen und Handlungsfeldern<br />

beschäftigen. Sie ist auch eine Antwort auf<br />

die Erklärung der Minister der IAEO-Mitgliedsstaaten<br />

aus dem Jahr 2<strong>01</strong>3, die auf<br />

die wachsende Bedrohung durch Cyber-Attacken<br />

und deren Möglichkeiten von Auswirkungen<br />

auf die nukleare Sicherheit verwies.<br />

Laut IAEO ist er ein weiteres Ziel der Konferenz,<br />

die internationale Zusammenarbeit<br />

auf dem Gebiet der Computersicherheit als<br />

ein wichtiges Element der nuklearen Sicherheit<br />

zu fördern.<br />

Die IAEO wird Einzelheiten zur „Internationalen<br />

Konferenz zu Computersicherheit in<br />

der kerntechnischen Welt: Fachgespräche<br />

und Expertenaustausch“ auf ihren Webseiten<br />

veröffentlichen.<br />

11<br />

ABSTRACTS | GERMAN<br />

Abstracts | German


<strong>atw</strong> Vol. 60 (<strong>2<strong>01</strong>5</strong>) | Issue 1 ı January<br />

12<br />

EU 2030 Targets “Unachievable”<br />

Without Long-Term Nuclear Operation<br />

INSIDE NUCLEAR WITH NUCNET<br />

NucNet<br />

Nuclear energy will continue to support<br />

greenhouse gas emission reduction targets until<br />

2020, but without decisions on long-term<br />

operation of ageing reactors, it will be difficult<br />

for the EU to meet its 2030 targets, International<br />

Energy Agency (IEA) executive director<br />

Maria van der Hoeven, tells NucNet.<br />

NucNet: Do you think EU energy policy addresses its goals<br />

of competitiveness, security of supply and sustainability?<br />

Maria van der Hoeven: At the IEA we have quite a few questions<br />

about this. It is good to have these targets, but up until<br />

now the EU is missing the direct connection between the three<br />

goals. What is mostly needed to achieve the goals is to finalise<br />

the EU’s internal energy market. Secondly, if you have a functioning<br />

energy market, you need cost-effective climate and<br />

energy policies because it is not only about climate and energy,<br />

but also about economic development and competitiveness.<br />

When you look into the EU climate and energy package,<br />

which sets the target of reducing greenhouse gas emissions by<br />

40 percent by 2030 compared to 1990, increasing the share<br />

of renewable energy sources to 27 percent and increasing energy<br />

efficiency by at least 27 percent, it is a European package.<br />

What I mean by that is that these EU targets are not<br />

translated into national targets. What has to be done is to<br />

ensure there is a governance framework to monitor how these<br />

Europe-wide targets are going to be achieved. I think it will be<br />

interesting to see how the new Commission will do this and<br />

how energy security and especially security of electricity supply<br />

will be improved.<br />

NucNet: What do you think is the role of nuclear energy in<br />

these plans?<br />

Maria van der Hoeven: It is important to realise that nuclear<br />

has been very important when it comes to the reduction of<br />

greenhouse gas emissions. Nuclear is one of the biggest lowcarbon<br />

electricity sources and this should not be forgotten. It<br />

provides 27 percent of the EU’s electricity and it will continue<br />

to support the EU’s emission reduction goals until 2020.<br />

However, after 2020 we are expecting the shutdown of the<br />

German nuclear fleet, with Belgium and Switzerland following.<br />

By that time, decisions will need to be taken. We have an<br />

ageing EU reactor fleet which requires country-level and<br />

owner/operator-level decisions in the short term regarding<br />

plant safety regulations, plant upgrades, uprates, lifetime extensions<br />

and licence renewals. I think upgrading and uprating<br />

existing nuclear plants is one of the cheapest ways of producing<br />

carbon-free electricity in the EU. Without long-term<br />

operation, we expect nuclear capacity in the EU could fall by<br />

a factor of six by 2030 and that will make it more difficult to<br />

achieve the EU’s 2030 targets.<br />

designs. We are in favour of an EU-wide nuclear design approval<br />

process, combined with appropriate market mechanisms<br />

to help investment decisions. In our view, the EU should<br />

ensure that those member states that wish to maintain the<br />

nuclear option can invest in new nuclear. They should benefit<br />

from the same incentives as other low-carbon generating<br />

technologies. Nuclear should not be put at a disadvantage under<br />

the new state aid rules.<br />

NucNet: What are the biggest challenges the EU faces related<br />

to nuclear energy in the coming decades?<br />

Maria van der Hoeven: The biggest challenge will be the decommissioning.<br />

The primary issue with this is waste management.<br />

There is no nuclear repository in place for long-lived<br />

nuclear waste. Another challenge is the risk to energy security.<br />

Particular attention should be paid to investments in new<br />

nuclear power plants to be built in the EU using third-country<br />

technology providers to ensure that these plants are not<br />

bound to one supplier of nuclear fuel. The possibility of fuel<br />

supply diversification, ensured by the Euratom Supply<br />

Agency, should be a condition for any new investment. This<br />

would contribute to a diversified portfolio of fuel supply in the<br />

interest of all EU plant operators.<br />

NucNet: Why do you think there is still a “sensitivity” regarding<br />

nuclear in European public opinion?<br />

Maria van der Hoeven: We want to acknowledge that there<br />

is considerable sensitivity around nuclear energy. The same is<br />

true for shale gas and carbon capture and storage. This sensitivity<br />

to nuclear is not on the same level in all IEA member<br />

countries. For example, Austria and the Czech Republic<br />

clearly do not share the same view.<br />

Europe is very sensitive to almost all forms of energy, including<br />

wind turbines and solar panels. This is linked to a lack of<br />

information, so we need more and better transparency on information<br />

for people. Because of differences in the perception<br />

of costs, benefits and risks, each member state closely guards<br />

its sovereignty over its nuclear power industry. The EU should<br />

contribute to transparency across the Union.<br />

Background<br />

The IEA report “Energy Policies of IEA Countries: European<br />

Union – 2<strong>01</strong>4” was published on 1 December 2<strong>01</strong>4. Recommendations<br />

in the report build on lessons learned since the<br />

first IEA in-depth review of the European Union in 2008.<br />

An executive summary of the report is online: www.iea.<br />

org/Textbase/npsum/EU2<strong>01</strong>4SUM.pdf<br />

Maria van der Hoeven became executive director of the IEA<br />

on 1 September 2<strong>01</strong>1. Previously, Ms. Van der Hoeven<br />

served as a minister in the government of the Netherlands<br />

from 2002 to 2<strong>01</strong>0.<br />

NucNet: What role does the EU have to play in ensuring<br />

more investment in new nuclear?<br />

Maria van der Hoeven: If the EU’s ageing reactor fleet is going<br />

to be decommissioned, then a decision has to be taken as<br />

to whether investments in new nuclear will be made. To help<br />

these investment decisions we need changes. For instance,<br />

there is no EU-wide licencing of new nuclear power plant<br />

Author<br />

NucNet<br />

The World’s Independent Communications Network<br />

for Nuclear Energy and Ionising Radiation<br />

Editor responsible for this story: Lubomir Mitev<br />

Avenue des Arts 56<br />

1000 Brussels/Belgium<br />

www.nucnet.org<br />

Inside Nuclear with NucNet<br />

EU 2030 Targets “Unachievable” Without Long-Term Nuclear Operation ı NucNet


<strong>atw</strong> Vol. 60 (<strong>2<strong>01</strong>5</strong>) | Issue 1 ı January<br />

Calendar<br />

<strong>2<strong>01</strong>5</strong><br />

13.-<strong>01</strong>.-15.<strong>01</strong>.<strong>2<strong>01</strong>5</strong><br />

World Nuclear Spotlight <strong>2<strong>01</strong>5</strong> and Working<br />

Group Meetings: Beijing, China.<br />

World Nuclear Association.<br />

www.etouches.com/ehome/105915/235404/<br />

<strong>01</strong>.02.-04.02.<strong>2<strong>01</strong>5</strong><br />

CONTE <strong>2<strong>01</strong>5</strong> – Conference on Nuclear Training and<br />

Education. Jacksonville, FL, USA. American Nuclear<br />

Society – ANS, www.ans.org<br />

09.02.-13.02.<strong>2<strong>01</strong>5</strong><br />

32 nd Short Courses on Multiphase Flow <strong>2<strong>01</strong>5</strong>. Zurich,<br />

Switzerland. ETH Zurich, Institut für Energietechnik,<br />

www.lke.mavt.ethz.ch<br />

18.02.-19.02.<strong>2<strong>01</strong>5</strong><br />

Nuclear Decommissioning & Waste Management<br />

Summit. London, UK. Active Communications<br />

International, www.wplgroup.com<br />

<strong>01</strong>.03.-04.03.<strong>2<strong>01</strong>5</strong><br />

PIME <strong>2<strong>01</strong>5</strong> – Public Information Materials Exchange.<br />

Bratislava, Slovakia. European Nuclear Society –<br />

ENS, www.euronuclear.org<br />

03.03.<strong>2<strong>01</strong>5</strong><br />

Nuclear energy in the UK: priorities for new build,<br />

funding and developing the supply chain.<br />

Central London, UK. Westminster Energy,<br />

Environment & Transport Forum.<br />

www.westminsterforumprojects.co.uk/forums/<br />

event.php?eid=935&t= 7870<br />

05.03.<strong>2<strong>01</strong>5</strong><br />

4. Fachgespräch Endlagerbergbau. Essen, Germany.<br />

DMT GmbH & Co. KG, www.dmt.de<br />

15.03.-19.03.<strong>2<strong>01</strong>5</strong><br />

WM<strong>2<strong>01</strong>5</strong> Conference. Phoenix, AZ, USA.<br />

www.wmsym.org<br />

16.03.-20.03.<strong>2<strong>01</strong>5</strong><br />

SUNCOP BF <strong>2<strong>01</strong>5</strong> Seminar: BEPU Methodologies<br />

and Applications for FSAR in Nuclear Reactor<br />

Safety Technology. College Station, TX/USA. Nuclear<br />

Research Group of San Piero a Grado (GRNSPG) of<br />

the University of Pisa (UNIPI), the Department of<br />

Nuclear Engineering of Texas A&M (Texas A&M),<br />

the Network of Nuclear Engineering and Energy<br />

Services (NNEES). www.grnspg.ing.unipi.it/suncopbf/<br />

19.03.-20.03.<strong>2<strong>01</strong>5</strong><br />

Istanbul Nuclear Power Plants Summit.<br />

Istanbul, Turkey.<br />

www.nuclearpowerplantssummit.com/<br />

13.04.-14.04.<strong>2<strong>01</strong>5</strong><br />

<strong>2<strong>01</strong>5</strong> JAIF Annual Conference. Tokyo, Japan. Japan<br />

Atomic Industry Forum. www.jaif.or.jp<br />

19.04.-23.04.<strong>2<strong>01</strong>5</strong><br />

RRFM <strong>2<strong>01</strong>5</strong> – European Research Reactor Conference.<br />

Bucharest, Romania. European Nuclear Society – ENS,<br />

www.euronuclear.org<br />

05.05.-07.05.<strong>2<strong>01</strong>5</strong><br />

46 th AMNT – Annual Meeting on Nuclear Technology<br />

<strong>2<strong>01</strong>5</strong> | Jahrestagung Kerntechnik (AMNT <strong>2<strong>01</strong>5</strong>).<br />

Berlin, Germany.<br />

DAtF – Deutsches Atomforum e.V.<br />

(German Atomic Forum) and<br />

Kerntechnische Gesellschaft e.V.<br />

(German Nuclear Society). Programme,<br />

www.nucleartech-meeting.com<br />

17.05.-20.05.<strong>2<strong>01</strong>5</strong><br />

ICONE 23 – Nuclear Power – Reliable Global Energy.<br />

Chiba, Japan. Japan Society of Mechanical Engineers<br />

(JSME), American Society of Mechanical Engineers<br />

(ASME) and Chinese Nuclear Society (CNS).<br />

www.icone23.org<br />

19.05.-21.05.<strong>2<strong>01</strong>5</strong><br />

RAMTrans <strong>2<strong>01</strong>5</strong> – Radioactive Materials Transport<br />

and Storage Conference and Exhibition. Oxford, UK.<br />

Nuclear Institute, www.ramtransport<strong>2<strong>01</strong>5</strong>.com<br />

31.05.-03.06.<strong>2<strong>01</strong>5</strong><br />

Canadian Nuclear Society 35 th Annual Conference –<br />

Nuclear Innovation Through Collaboration. Saint<br />

John, Canada. Canadian Nuclear Society.<br />

www.cnsconference<strong>2<strong>01</strong>5</strong>.org<br />

<strong>01</strong>.06.-03.06.<strong>2<strong>01</strong>5</strong><br />

ATOMEXPO <strong>2<strong>01</strong>5</strong>. Moscow, Russia. Rosatom,<br />

www.atomexpo.com<br />

07.06.-11.06.<strong>2<strong>01</strong>5</strong><br />

<strong>2<strong>01</strong>5</strong> ANS Annual Meeting – Nuclear Technology:<br />

An Essential Part of the Solution. San Antonio, TX/<br />

USA. ANS – American Nuclear Society,<br />

www.ans.org<br />

09.06.-11.06.<strong>2<strong>01</strong>5</strong><br />

Power-Gen Europe – Secure Power for a Sustainable<br />

Economy. Amsterdam, The Netherlands. PennWell.<br />

www.powergeneurope.com<br />

14.06.-20.06.<strong>2<strong>01</strong>5</strong><br />

CRETE 15 – International Conference in Applications<br />

of Nuclear Techniques. Crete, Greece.<br />

www.crete15.org<br />

15.06.-19.06.<strong>2<strong>01</strong>5</strong><br />

International Conference on Management of Spent<br />

Fuel from Nuclear Power Reactors – An Integrated<br />

Approach to the Back-End of the Fuel Cycle.<br />

Vienna, Austria.<br />

International Atomic Energy Agency – IAEA.<br />

www.iaea.org<br />

18.06.-19.06.<strong>2<strong>01</strong>5</strong><br />

Neue Entwicklungen im Strahlenschutz und ihre<br />

Anwendungen in der Praxis. Munich, Germany.<br />

TÜV SÜD Industrie Service GmbH and<br />

TÜV SÜD Akademie GmbH,<br />

www.tuev-sued.de<br />

22.06.-25.06.<strong>2<strong>01</strong>5</strong><br />

ENYGF <strong>2<strong>01</strong>5</strong> -European Nuclear Young Generation<br />

Forum <strong>2<strong>01</strong>5</strong>. Paris, France. ENS YGN,<br />

www.nygf<strong>2<strong>01</strong>5</strong>.org<br />

19.08.-28.08.<strong>2<strong>01</strong>5</strong><br />

Frédéric Joliot/Otto Hahn Summer School on Nuclear<br />

Reactors ‘Physics, Fuels, and Systems’ – Enhanced<br />

Reactor Safety – Design and Simulation of Evolutionary<br />

LWR Cores. Karlsruhe, Germany. Nuclear Energy<br />

Division of the Commissariat à l´Énergie Atomique<br />

(CEA/DEN, France) and Karlsruher Institut für Technologie,<br />

KIT. www.fjohss.eu<br />

24.08.-28.08.<strong>2<strong>01</strong>5</strong><br />

23 rd WiN Global Annual Conference: Women in<br />

Nuclear Meet Atoms for Peace. Vienna, Austria.<br />

WiN Global and the WiN IAEA Chapter, IAEA.<br />

www.women-in-nuclear.de, www.win-global.org/<br />

<strong>01</strong>.09.-03.09.<strong>2<strong>01</strong>5</strong><br />

Power-Gen Asia – Investing in a Sustainable<br />

Tomorrow. Bangkok, Thailand. PennWell.<br />

www.powergenasia.com<br />

09.09.-10.09.<strong>2<strong>01</strong>5</strong><br />

VGB Congress “Power Plants <strong>2<strong>01</strong>5</strong>”<br />

Vienna, Austria. www.vgb.org<br />

09.09.-11.09.<strong>2<strong>01</strong>5</strong><br />

WNA Symposium <strong>2<strong>01</strong>5</strong>. London, United Kingdom.<br />

World Nuclear Association,<br />

www.wna-symposium.org<br />

13.09.-17.09.<strong>2<strong>01</strong>5</strong><br />

TopFuel <strong>2<strong>01</strong>5</strong>. Zurich, Switzerland. European Nuclear<br />

Society – ENS, www.euronuclear.org<br />

14.09.-18.09.<strong>2<strong>01</strong>5</strong><br />

IAEA General Conference. Vienna, Austria.<br />

International Atomic Energy Agency – IAEA.<br />

www.iaea.org<br />

20.09.-24.09.<strong>2<strong>01</strong>5</strong><br />

GLOBAL <strong>2<strong>01</strong>5</strong> – 21 st International Conference &<br />

Exhibition: Nuclear Fuel Cycle for a Low-Carbon<br />

Future. Paris, France. www.sfen.fr or www.sfen.org<br />

05.10.-09.10.<strong>2<strong>01</strong>5</strong><br />

Jahrestagung des Fachverbandes Strahlenschutz <strong>2<strong>01</strong>5</strong>.<br />

Baden near Vienna, Austria. Österreichischer Verband<br />

für Strahlenschutz (ÖVS), Deutsch-Schweizerischer<br />

Fachverband für Strahlenschutz e. V. (FS).<br />

www.strahlenschutztagung.at<br />

08.11.-12.11.<strong>2<strong>01</strong>5</strong><br />

<strong>2<strong>01</strong>5</strong> ANS Winter Meeting and Nuclear Technology<br />

Expo. Washington DC, USA. ANS – American<br />

Nuclear Society, www.ans.org<br />

30.11.-11.12.<strong>2<strong>01</strong>5</strong><br />

COP 21 – 21 st session of the Conference of the Parties.<br />

Paris, France. United Nations Framework Convention<br />

on Climate Change – UNFCCC,<br />

www: http://www.unfccc.int<br />

09.12.-11.12.<strong>2<strong>01</strong>5</strong><br />

Power-Gen International and Nuclear Power International.<br />

Orlando, Florida, USA. PennWell.<br />

www.power-gen.com,<br />

www.nuclearpowerinternational.com<br />

13<br />

CALENDAR<br />

21.04.-23.04.<strong>2<strong>01</strong>5</strong><br />

world nuclear fuel cycle. Prague, Czech Republic.<br />

World Nuclear Association – WNE, NEI – Nuclear<br />

Energy Institute. www.nei.org,<br />

www.world-nuclear.org<br />

23.04.-24.04.<strong>2<strong>01</strong>5</strong><br />

Emergency Power Systems at Nuclear Power Plants.<br />

Munich, Germany. TÜV SÜD Industrie Service GmbH<br />

and TÜV SÜD Akademie GmbH, www.tuev-sued.de<br />

23.06.-26.06.<strong>2<strong>01</strong>5</strong><br />

International Conference on Operational Safety.<br />

Vienna, Austria. International Atomic Energy Agency<br />

– IAEA. www.iaea.org<br />

10.08.-14.08.<strong>2<strong>01</strong>5</strong><br />

SMiRT-23 – Structural Mechanics in<br />

Reactor Technology. Manchester, UK.<br />

SMiRT. www.smirt23.org<br />

Calendar


<strong>atw</strong> Vol. 60 (<strong>2<strong>01</strong>5</strong>) | Issue 1 ı January<br />

OPERATION AND NEW BUILD 14<br />

Overview of PHARE Projects Implemented<br />

in Romania Between 1997 and 2008 for<br />

Enhancing the Nuclear Safety Level<br />

Radian Sanda, Benoit Zerger, Giustino Manna and Brian Farrar<br />

1. Framework of PHARE programme and<br />

projects list<br />

Reconstruction of the economy of each member state is a<br />

major asset for the European Union (EU) global community.<br />

Since 1991, through the Poland Hungary Aid for Reconstruction<br />

of the Economy (PHARE) programme, the<br />

European Commission (EC) supported the transition of the<br />

Eastern European states to the European market economy.<br />

PHARE was a pre-accession financial assistance programme<br />

which involved countries from Central and Eastern<br />

Europe that applied to become members of the<br />

European Union. The programme helped to carry out the<br />

reforms required for membership and to equip the partner<br />

countries to benefit from EU funds on accession.<br />

Romania was the first country of post-communist<br />

Europe to have official relations with the European Community.<br />

It was included in the Community’s Generalized<br />

System of Preferences from 1974. After December 1989<br />

when the Romanian Revolution occurred, successive Romanian<br />

Governments shared a common main goal to gain<br />

EU membership. After Hungary and Poland, Romania was<br />

the third Eastern European country to sign its Europe<br />

Agreement (1993) and submitted its official application for<br />

membership of the EU in 1995. During the 2000s, Romania<br />

implemented a large number of reforms to prepare for EU<br />

accession. Part of the costs was covered using the PHARE<br />

Programme.<br />

One of the fundamental priority areas of the PHARE<br />

funding was nuclear safety. Regarding this area, Romania,<br />

member of the EU since 1 st January 2007, received funds<br />

(more than 8 million euro) from the EC from 1998 in order<br />

to align its legislation and practices to the level of requirements<br />

imposed by the EU.<br />

Currently, Romania is operating two CANDU 6 type reactors<br />

located at Cernavodă site. A CANDU 6 type reactor is<br />

based on Canadian technology, and is a Pressurized Heavy<br />

Water moderated and cooled Reactor (PHWR). Romania is<br />

the only country which operates such type of reactors<br />

within the EU, and it is the only one within the Eastern<br />

European states operating only power reactors based on<br />

Western technology.<br />

In the period covered by this study, 16 PHARE projects<br />

were implemented in Romania (see Table 1). In general,<br />

these projects were aimed at improving the relevant institutional<br />

capabilities while dealing with nuclear safety issues.<br />

More specifically, the topics covered were:<br />

• Regulatory Activities (RA) (8 projects);<br />

• Radioactive Waste Management (RWM) (7 projects);<br />

• On-Site Assistance (OSA) – this means that direct support<br />

was given to the NPP in order to improve nuclear<br />

safety and to transfer the know-how of European power<br />

plant operators (1 project).<br />

2. Projects related to regulatory activities<br />

The projects concerned mainly the national nuclear safety<br />

authority “Comisia Naţională pentru Controlul Activităţilor<br />

Nucleare” (the National Commission for Nuclear Activities<br />

Control (CNCAN)) but also other specialized units and services<br />

within the Ministry of Administration and Interior, the<br />

Ministry of Environment and Waters Management, the Ministry<br />

of Education and Research or by another National Agencies.<br />

Figure 1 shows the implementation timeline of the<br />

PHARE projects related to RA.<br />

Enhancement of the regulatory regime<br />

There were three projects dealing with the Regulatory Regime<br />

Enhancement: RO/RA/<strong>01</strong> and RO/RA/02 “Transfer<br />

of Western European Methodology to the Nuclear Safety<br />

Authority of Romania”, RO.<strong>01</strong>.10.<strong>01</strong> “Nuclear Safety Regulatory<br />

Regime Consolidation” and 2005/<strong>01</strong>7-519.03.03<br />

“Development of CNCAN capabilities regarding the regulatory<br />

aspects of Naturally Occurring Radioactive Materials<br />

(NORM) and Technologically Enhanced Naturally Occurring<br />

Radioactive Materials (TENORM) related activities”.<br />

The first project was implemented in two phases, with a<br />

pause of more than 4 years between the phases. Both<br />

phases addressed the areas needing enhancement with the<br />

highest priority in the framework of the accession process<br />

and for which the transfer of Western European methods<br />

and practices was deemed to be most appropriate. The<br />

main objective of the project was to strengthen and enhance<br />

the effectiveness of the Romanian Nuclear Regulatory<br />

Authority and to improve its competence and independent<br />

technical assessment capability. Other topics<br />

covered were: Quality Management System (QMS) within<br />

the CNCAN organization, CNCAN performance on inspection<br />

practice and emergency preparedness, assistance in<br />

elaboration/implementation of regulations/norms/guides<br />

in accordance with European legislation, Western practice<br />

and taking into account the IAEA requirements.<br />

The second project, “Nuclear Safety Regulatory Regime<br />

Consolidation”, continued the work carried out in the first<br />

project, and it was intended primarily to revise and develop<br />

a new set of regulations in line with the practices of<br />

the regulatory bodies who were members of the Consortium<br />

of Western Regulators (CWR) which undertook the<br />

project. In addition to the work carried out to improve the<br />

QMS, CNCAN was in the process of implementing the acquis<br />

communautaire related to the Council Directives<br />

96/29/EURATOM and 97/43/EURATOM. During the project,<br />

assistance was provided for the revision of the final<br />

version of the regulations on radiation safety in the areas<br />

of radiotherapy, radio diagnosis, industry and nuclear<br />

medicine and the codes of practice for Dosimetry. In addition,<br />

the project resulted in the improvement of the norms<br />

regulating the safeguards and physical protection areas,<br />

and a new set of norms on radioactive waste management<br />

was developed, covering: the classification of the radioactive<br />

waste, the principles of radioactive waste management,<br />

clearance levels for radioactive waste and radioactive effluents<br />

and the authorization process of pre-treatment,<br />

Operation and New Build<br />

Overview of PHARE Projects Implemented in Romania Between 1997 and 2008 for Enhancing the Nuclear Safety Level ı Radian Sanda, Benoit Zerger, Giustino Manna and Brian Farrar


<strong>atw</strong> Vol. 60 (<strong>2<strong>01</strong>5</strong>) | Issue 1 ı January<br />

Nr. Original Project Title Type of activity Project Code<br />

1<br />

2<br />

Support for Regulatory Authority staff to improve its<br />

capabilities with the view of Probabilistic Safety<br />

Assessment<br />

Development of CNCAN capabilities regarding the<br />

regulatory aspects of Naturally Occurring Radioactive<br />

Materials (NORM) and Technologically Enhanced<br />

Naturally Occurring Radioactive Materials (TENORM)<br />

related activities<br />

2005/<strong>01</strong>7-519.03.<strong>01</strong><br />

2005/<strong>01</strong>7-519.03.03<br />

3 Romanian Regulatory Emergency Response Center 5812.06.<strong>01</strong><br />

4 Early warning system – Cernavoda Regulatory Activities PH6.<strong>01</strong>/99 (Lot 1 and 2)<br />

5 Nuclear Safety Regulatory Regime Consolidation RO.<strong>01</strong>.10.<strong>01</strong><br />

6<br />

7<br />

Support to the Romanian Nuclear Regulatory Authority<br />

(CNCAN) in the licensing review of Fire Protection, Overpressure<br />

Protection of Reactor Primary Circuit and Main<br />

Steam Line Design Safety Issues in Cernavoda 1 NPP<br />

Transfer of Western European Methodology to the<br />

Nuclear Safety Authority of Romania<br />

RO.<strong>01</strong>.10.02<br />

8 Support to CNCAN – seismic evaluation – Cernavoda NPP RO/TS/<strong>01</strong><br />

9<br />

Safety Assessment of the Radioactive X-Waste Repository<br />

of Baita Bihor<br />

RO/RA/<strong>01</strong> and RO/RA/02<br />

006-RO/PHARE-SCR/A6-<strong>01</strong><br />

OPERATION AND NEW BUILD 15<br />

10<br />

Preliminary Safety Analysis Report for the Low-Level<br />

Radioactive Waste Repository Baita Bihor, Romania<br />

632.08.<strong>01</strong><br />

11<br />

12<br />

Up-Grading of the Baita-Bihor Repository for<br />

Institutional Radioactive Waste in Romania<br />

Technical assistance to Romania in establishing the activity<br />

of National Agency for Radioactive Waste (ANDRAD)<br />

Radioactive Waste<br />

Management<br />

5812.06.03<br />

5812.06.02<br />

13<br />

Technical Basis and Methodological Approach for Waste<br />

Acceptance Criteria<br />

PH4.10/94<br />

14<br />

Management of Spent Sealed Radioactive Sources in<br />

Central and Eastern Europe<br />

SSRS/P<strong>01</strong><br />

15 Characterization of radioactive waste at Cernavoda NPP 5812.06.04<br />

16<br />

Modernisation Project for Cernavoda NPP2 –<br />

Environmental Impact Assessment<br />

On-Site Assistance<br />

009-RO/PHARE-SCR/A6-C<br />

| | Tab. 1.<br />

PHARE projects implemented in Romania.<br />

| | Fig. 1.<br />

The timetable of PHARE projects related to Regulatory Authority.<br />

treatment, conditioning and packaging of radioactive<br />

waste. Last but not least, CNCAN staff was trained in various<br />

other areas such as: practical implementation of Quality<br />

Management requirements in the regulatory activities;<br />

specific procedures for issuing type approval in case of<br />

shipments; PHARE project management.<br />

The last PHARE project was also the shortest project implemented<br />

in support of RA. This project improved the<br />

CNCAN technical capabilities in the framework of radioactive<br />

waste management. In fact, this project assured the<br />

implementation in Romania of the Council Directive<br />

96/29/EURATOM which required for the first time that<br />

workplaces in the non-nuclear industry also need to be<br />

subject to regulatory control if the presence of natural radiation<br />

sources, that can lead to a significant exposure of<br />

workers or members of the public, cannot be disregarded<br />

from the radiation protection point of view. Such workplaces<br />

are found in industries using or processing types of<br />

Operation and New Build<br />

Overview of PHARE Projects Implemented in Romania Between 1997 and 2008 for Enhancing the Nuclear Safety Level ı Radian Sanda, Benoit Zerger, Giustino Manna and Brian Farrar


<strong>atw</strong> Vol. 60 (<strong>2<strong>01</strong>5</strong>) | Issue 1 ı January<br />

OPERATION AND NEW BUILD 16<br />

minerals or rocks containing significant amounts of natural<br />

radioactive elements (NORM industry). Other operations<br />

such as storage, application or disposal of residues resulting<br />

from the NORM or other industries containing enhanced<br />

concentrations of naturally occurring radionuclides also<br />

had to be included in the control. Title VII of 96/29/<br />

EURATOM encompasses all kinds of natural radiation<br />

sources and the resulting increase in exposure. The focus of<br />

the project, on the other hand, was on materials (raw materials<br />

with increased radioactivity, NORM and TENORM<br />

residues) so that aircraft operation and radon in homes and<br />

workplaces (spas, caves etc.) were beyond the scope of this<br />

assignment. However, it was emphasized that the enforcement<br />

of NORM/TENORM regulations depends critically on<br />

the level of knowledge of the regulatory authorities.<br />

Enhancement of the licensing capabilities<br />

Three PHARE projects were related to the enhancement of<br />

the licensing capabilities of the regulatory authority:<br />

RO.<strong>01</strong>.10.02 „Support to the Romanian Nuclear Regulatory<br />

Authority (CNCAN) in the licensing review of Fire Protection,<br />

Overpressure Protection of Reactor Primary Circuit<br />

and Main Steam Line Design Safety Issues in<br />

Cernavoda 1-NPP”, RO/TS/<strong>01</strong> “Support to CNCAN – seismic<br />

evaluation – Cernavoda NPP” and 2005/<strong>01</strong>7-519.03.<strong>01</strong><br />

“Support to Regulatory Authority Staff to improve its Capabilities<br />

with the View of Probabilistic Safety Assessment”.<br />

The project RO.<strong>01</strong>.10.02 started at the same time as the<br />

“Nuclear Safety Regulatory Regime Consolidation” project<br />

(<strong>01</strong>/<strong>01</strong>/2002) and was aimed at strengthening and enhancing<br />

the effectiveness of the CNCAN and to improve its<br />

competence in the licensing review of fire protection, water<br />

hammer safety analysis, overpressure protection of the<br />

reactor primary circuit and main steam line design safety<br />

issues in Unit 1 of Cernavoda NPP. The Fire Protection Programme,<br />

CNCAN’s Norm on specific requirements on fire<br />

protection in NPP, documentation covering the overpressure<br />

protection in Safety Systems and Reactor Primary Circuit<br />

and the Main Steam Line Stress Analyses were reviewed<br />

during the implementation of this project. This<br />

work benefited CNCAN in the decision making related to<br />

the Cernavoda NPP Unit 1 licensing process, in the resolution<br />

of open safety issues and provided technical and<br />

methodological support during the CNCAN independent<br />

review process of the plant modifications safety assessment<br />

submitted by the utility.<br />

The project “Support to CNCAN – seismic evaluation –<br />

Cernavoda NPP” was requested in order for the Regulatory<br />

Authority to receive assistance in the safety related seismic<br />

evaluation of the Cernavoda NPP. Under the project several<br />

seismic safety assessment studies performed for Cernavoda<br />

NPP were considered and evaluated. CNCAN was assisted<br />

in the establishment of procedures and practices for addressing<br />

seismic hazards evaluation and setting relevant<br />

regulatory requirements.<br />

The last PHARE project connected to the enhancement<br />

of the licensing activities was the project “Support to Regulatory<br />

Authority Staff to improve its Capabilities with the<br />

View of Probabilistic Safety Assessment”. This project required<br />

very high quality work to be carried out both by<br />

CNCAN personnel and by the sub-contractors responsible<br />

for the implementation of the project. The entire project<br />

(approx. 1.5 years) consisted in the provision of training to<br />

CNCAN staff responsible for PSA analysis. The training was<br />

aimed at equipping the staff of CNCAN with the necessary<br />

skills to determine to what extent the existing plant specific<br />

Probabilistic Safety Assessment (PSA) for Cernavoda<br />

Unit 1 could be used in supporting decisions related to nuclear<br />

safety, as well as at establishing a framework that<br />

would assure that the present and future PSAs could be<br />

relied upon. For knowledge management reasons, CNCAN<br />

developed a draft final version of the “Procedure on the review<br />

of PSA” (Level 1 for internal initiators as well as for<br />

internal and external hazards) that will be used in the future.<br />

Also, the final version of the “Norm on Regulatory<br />

Requirements for PSA” was developed, and it can be used<br />

by the utility staff in the preparation of the Licensee’s request<br />

for changes in the licensing basis and by regulatory<br />

staff in the evaluation of such submittals.<br />

Emergency response<br />

There were two PHARE projects implemented in Romania<br />

which were related to emergency response: PH6.<strong>01</strong>/99 (Lot<br />

1 and 2) “Early warning system – Cernavoda” and 5812.06.<strong>01</strong><br />

“Romanian Regulatory Emergency Response Center”.<br />

The first PHARE project related to this topic was the<br />

project “Early warning system – Cernavoda”. This project,<br />

although related to RA, had, however, other beneficiaries<br />

than CNCAN: the Ministry of Administration and Interior<br />

(MI) and the Ministry of Environment and Waters Management<br />

(MEWM) as well as an extended scope: to not only<br />

provide a notification system for Cernavoda city and NPP,<br />

but also one for accidents with trans-boundary effects. At<br />

the end of this project, besides the enhancement of the existent<br />

Early Warning System around Cernavoda NPP and<br />

the establishment of a system designed for real time data<br />

acquisition and data transfer to the National Central Emergency<br />

Situation Centre, an Early Warning system around<br />

Kozloduy NPP (but within the Environmental Protected<br />

Zone on Romanian territory) was installed and a Regional<br />

Emergency Centre in the city of Bechet (close to Romanian/<br />

Bulgarian border on the Danube river) was established.<br />

The second project, “Romanian Regulatory Emergency<br />

Response Center”, continued the work performed by the<br />

previous PHARE project. The difference was that this project<br />

was aimed at improving the regulatory body (CNCAN)<br />

competences in emergency management. The project<br />

provided the appropriate equipping of the CNCAN Emergency<br />

Response Centre. By the end of the project, CNCAN<br />

was provided with technical means for emergency response<br />

and sample analysis, and also with the necessary<br />

training for raising the skills and knowledge of the staff responsible<br />

for emergency response. Besides, CNCAN developed<br />

a comprehensive set of technical specifications for<br />

the tendering and procurement of the necessary equipment<br />

– and the scope was extended from the acquisition of<br />

analysis equipment to all the equipment needed for the establishment<br />

of a network for transferring data to other national<br />

and international Emergency Response authorities.<br />

3. Projects related to radioactive waste<br />

management<br />

The PHARE projects implemented in Romania in support of<br />

RWM focussed on improving the quality of services and the<br />

skills and knowledge at institutional level of the institutions<br />

considered the major players in the radioactive waste<br />

management area. The beneficiaries of these projects<br />

were: CNCAN, the Ministry of Education and Research<br />

(MER), the National Agency for Radioactive Waste (AN-<br />

DRAD), the Romanian National Electrical Company (Societatea<br />

Nationala “Nuclearelectrica” (SNN)) and the “Regia<br />

Autonoma pentru Metale Rare” (Rare Metals Autonomous<br />

Authority – RMAR). Figure 2 illustrates the timeframes of<br />

these projects.<br />

Operation and New Build<br />

Overview of PHARE Projects Implemented in Romania Between 1997 and 2008 for Enhancing the Nuclear Safety Level ı Radian Sanda, Benoit Zerger, Giustino Manna and Brian Farrar


<strong>atw</strong> Vol. 60 (<strong>2<strong>01</strong>5</strong>) | Issue 1 ı January<br />

| | Fig. 2.<br />

The timetable of PHARE projects related to Radwaste Management.<br />

Radioactive waste repository<br />

There were 4 projects in connection to the Radioactive<br />

Waste Repository.<br />

Three of them were intended to support the establishment<br />

of the national Low-Level Radioactive Waste Repository<br />

at Baita, in Bihor County. These projects were, chronologically,<br />

006-RO/PHARE-SCR/A6-<strong>01</strong> “Safety Assessment<br />

of the Radioactive X-Waste Repository of Baita Bihor”,<br />

5812.06.03 “Up-Grading of the Baita-Bihor Repository for<br />

Institutional Radioactive Waste in Romania” and 632.08.<strong>01</strong><br />

“Preliminary Safety Analysis Report for the Low-Level Radioactive<br />

Waste Repository Baita Bihor, Romania”.<br />

The first project focused on providing technical assistance<br />

to the CNCAN experts in order to improve their techniques<br />

of overall safety assessment of the Low-Level Radioactive<br />

Waste Repository Baita Bihor. The project considered<br />

the technical characteristics of the waste disposal<br />

site (i.e. the inflow rate, the sorption on backfill) and delivered<br />

a thorough Integrated Performance Assessment<br />

(IPA) based on code simulations, in order to verify the uncertainty<br />

of hypotheses and to identify worst case scenarios<br />

(i.e. the rock cover has been totally eroded). The IPA<br />

was performed in collaboration with IRSN (France) and<br />

GRS (Germany) specialists for establishing a reliable<br />

strategy for the future (i.e. for defining the maximum<br />

waste content of the repository and of waste acceptance<br />

criteria). It should be noted that the assessment was performed<br />

under the regulatory and technical point of view,<br />

and, at the end, a preliminary list of base case scenarios<br />

was established. These scenarios included particular features,<br />

events and processes (FEP) defined in the so-called<br />

simplified FEP lists drawn up by experts and screened out<br />

on the basis of appropriate justifications.<br />

The second project, “Up-Grading of the Baita-Bihor Repository<br />

for Institutional Radioactive Waste in Romania”,<br />

continued on the same activities started in the first project.<br />

This project targeted the application of best EU practices in<br />

the upgrading and licensing of Baita-Bihor Repository for<br />

institutional radioactive waste in Romania, in order to improve<br />

the radiological protection of the operational staff,<br />

population and environment with regards to radioactive<br />

waste disposal activities in Romania. For this project, the<br />

beneficiaries were both the Ministry of Education and Research<br />

and CNCAN. The project aimed, within the framework<br />

of the Institutional Radioactive Waste, to assess the<br />

situation at Baita Bihor placing emphasis on the most urgent<br />

actions to be implemented for the complete refurbishment<br />

and modernisation of the repository.<br />

The third project treating the establishment of the Low-<br />

Level Radioactive Waste Repository was the longest one.<br />

The project “Preliminary Safety Analysis Report for the<br />

Low-Level Radioactive Waste Repository Baita Bihor, Romania“<br />

was a clear continuation of the efforts performed<br />

during the implementation of the project regarding the<br />

safety assessment of the repository. Not only CNCAN, but<br />

also the Ministry of Education and Research (MER) were<br />

the project beneficiaries, although the results were<br />

mainly used by CNCAN during the licensing process of<br />

the repository operations. The work was carried out to<br />

ensure that the activities related to the Baita Bihor repository<br />

corresponded to the European Union practices and<br />

strategies. During the project implementation the Preliminary<br />

Safety Assessment Report based on in-depth<br />

analysis of the operational radioprotection and post-closure<br />

radiological safety of the repository was developed,<br />

including the assessment of the associated uncertainties.<br />

In order to undertake future safety analysis, local skills<br />

were developed as well, in parallel with the definition of<br />

a programme focused on site characterization and experimental<br />

work in order to further improve the knowledge<br />

of the site and reduce the uncertainties underlying the<br />

assessed doses.<br />

National Agency for Radioactive Waste<br />

One project (5812.06.02) dealt with “Technical assistance<br />

to Romania in establishing the activity of National<br />

Agency for Radioactive Waste (ANDRAD)”, and started at<br />

the same time as the project related to the up-grading<br />

of the repository. This project was needed to help Romania<br />

to establish in detail the responsibilities of the National<br />

Agency for Radioactive Waste, which was formally<br />

set up in January 2003 (following the Governmental Ordinance<br />

No.11/2003). ANDRAD was assisted to develop a<br />

national strategy for safe management of spent fuel and<br />

radioactive waste and to define the appropriate financing<br />

scheme for radioactive waste disposal. During this project<br />

the recommendations from the 2004 Country Report<br />

regarding the progress made by Romania in the accession<br />

perspective were implemented; they concerned<br />

the clear delineation of responsibilities between CNCAN,<br />

ANDRAD and Nuclear Agency (AN) because of the need<br />

for continuation of efforts to implement the measures to<br />

improve the management of institutional radioactive<br />

waste. The transfer of the National Repository of Radioactive<br />

Waste Baita-Bihor to ANDRAD responsibility was<br />

following the recommendations of the (Romanian) Country’s<br />

Supreme Defence Council Resolution no. 108/2005<br />

on the establishment of the necessary financial resources<br />

for decommissioning and the management of radioactive<br />

waste.<br />

OPERATION AND NEW BUILD 17<br />

Operation and New Build<br />

Overview of PHARE Projects Implemented in Romania Between 1997 and 2008 for Enhancing the Nuclear Safety Level ı Radian Sanda, Benoit Zerger, Giustino Manna and Brian Farrar


<strong>atw</strong> Vol. 60 (<strong>2<strong>01</strong>5</strong>) | Issue 1 ı January<br />

OPERATION AND NEW BUILD 18<br />

Waste acceptance criteria<br />

The PHARE project PH4.10/94 had beneficiaries from multiple<br />

countries. In Romania, the beneficiary was the “Regia<br />

Autonoma pentru Metale Rare” (Rare Metals Autonomous<br />

Authority – RMAR). The other co-beneficiaries were institutions<br />

from Czech Republic, Estonia, Hungary, Latvia,<br />

Lithuania, Poland, Slovakia and Slovenia. The project<br />

provided the beneficiary country with comprehensive information<br />

on accepted EU practices in radioactive waste<br />

management and disposal, critical assessment of the methods<br />

employed in the beneficiary’s countries and methodology<br />

for the development of radioactive Waste Acceptance<br />

Criteria (WAC) for waste packages to ensure their safe<br />

transportation, handling, storage and disposal. The technical<br />

assistance provided for Romania covered the following:<br />

a presentation of the waste packages acceptance criteria<br />

methodology for all operating disposal facilities in<br />

the countries of the European Union; the performance of a<br />

technical study covering relevant aspects to define the<br />

waste packages acceptance criteria; and the development<br />

of the waste package acceptance criteria approach that<br />

will be applied to the planned disposal facilities.<br />

Waste characterization at Cernavoda NPP<br />

The project 5812.06.04 was the last PHARE project implemented<br />

in Romania in support of RWM activities. This project<br />

was also the only project in support of RWM having as<br />

beneficiary the nuclear operator: the Romanian National<br />

Electrical Company (Societatea Nationala “Nuclearelectrica”<br />

(SNN)). The project covered the aspects related to on-site<br />

radioactive waste characterisation in order to achieve the<br />

required level for accession to the European Union. The<br />

activities carried out were concise and referred to: the classification<br />

system based on physical form of the wastes<br />

(solid, organic liquid, inflammable solid-liquid mixes); the<br />

identification system, for each type of radioactive waste,<br />

based on their source, substance, radionuclide content and<br />

contact dose rate; and the on-site disposal facilities for each<br />

type of radioactive waste. The project resulted in the setting<br />

up of measuring equipment for waste characterisation,<br />

the development of methodologies for characterising the<br />

radionuclide content in low and intermediate level waste,<br />

the establishment of a database based on the waste characterisation<br />

system and the improvement of the capability of<br />

personnel of Cernavoda NPP to implement the characterisation<br />

programme. Last, but not least, a waste segregation<br />

management according to disposal route was implemented<br />

(e.g. free release, disposal in a landfill, disposal in a<br />

near-surface repository, and long-term storage pending the<br />

availability of a deep geological repository).<br />

Spent Sealed Radioactive Sources (SSRS)<br />

There was only one project implemented in Romania in respect<br />

of the management of the SSRS: SSRS/P<strong>01</strong> “Management<br />

of Spent Sealed Radioactive Sources in Central<br />

and Eastern Europe”. This project was the shortest project<br />

in support of the RWM activities (12 months), and was<br />

also an international one having five beneficiary countries.<br />

During the project implementation, a study was performed<br />

to consider the situation relating to the regulation and<br />

management of spent sealed radioactive sources (SSRS) in<br />

five of the Central and Eastern European (C&EE) countries<br />

that were being considered for admission to the EU,<br />

namely, Bulgaria, Latvia, Lithuania, Romania and Slovakia<br />

(two previous studies had considered the situation in the<br />

current EU member states and in the Czech Republic, Estonia,<br />

Hungary, Poland and Slovenia). It should be noted<br />

that, at the date of the project, Romania was the only country<br />

in the study that manufactured SRS and had one national<br />

radioactive waste disposal facility that could accept<br />

SSRS. In addition, there were two interim storage facilities<br />

for SSRS. The project concluded that all the countries were<br />

proceeding with their radioactive waste management<br />

plans, taking account (to varying degrees) of international<br />

standards and practices relating to acceptable dose uptakes,<br />

environmental impact, etc. Such a situation was<br />

similar to that relating to the EU member states that had<br />

been studied, which had also not developed specific prescriptive<br />

disposal criteria for universal application across<br />

all states. Many improvements for radioactive waste management<br />

were recommended to the states and the implementation<br />

of these was expected to serve to further improve<br />

the situation and provide a long-term safe environment<br />

for the management of SSRS. In fact, the technical<br />

assistance offered for Romania covered the following: detection<br />

of radioactive material at the entrance of metal<br />

scrap facilities and at national borders; understanding of<br />

the full life-cycle of SRS, from manufacture through to disposal<br />

in order to avoid accidental inclusion of SSRS in consignments<br />

of scrap metal; development of the current regulations<br />

in order to include waste categorisation, facility<br />

licensing and SSRS disposal; and transferring of the old<br />

database that included SRS and related information, kept<br />

by CNCAN, to a new more practical one.<br />

4. Projects related to On-Site Assistance<br />

The project with reference 009-RO/PHARE-SCR/A6-C<br />

was titled “Modernisation Project for Cernavoda NPP2 –<br />

Environmental Impact Assessment“. It should be noted<br />

that the aim of the project was not the assessment of the<br />

safety of the power plant design itself, but of the manner in<br />

which the safety-related, radiation protection and emergency<br />

response systems already were or would be realised<br />

at Cernavoda, and their compliance with Western standards<br />

and practices as far as relevant to the EIA.<br />

It was underlined that the overall radiation protection<br />

situation at the current Unit 1, which was assumed to be<br />

identical to that to be applied at Unit 2, was considered to<br />

be in compliance with relevant international standards and<br />

practices regarding the protection of both staff and population.<br />

The significance of some minor deviations was considered<br />

to be low and, additionally, they were understood<br />

to be resolved before the Unit 2 was put into operation.<br />

Furthermore, many design changes in the Cernavoda<br />

Unit 2 were observed with respect to its reference Unit, the<br />

Cernavoda Unit 1. Of these design improvements, the majority<br />

were related to safety and the mitigation of postulated<br />

accidents. Therefore, the dose estimates made for the<br />

Unit 1 could be assumed to be conservative for the Unit 2.<br />

The list of major changes planned for this unit included a<br />

number of the components and systems, such as the Heat<br />

Transport System (HTS) and its components, heat transport<br />

auxiliary systems, safety systems, instrumentation<br />

and control systems and the control room. Improvements<br />

had also been recommended by the consultant (HPC AG –<br />

the engineer enterprise) for safety analysis methodologies.<br />

5. Discussion<br />

The projects in support of the Regulatory Authority targeted<br />

the areas considered as highest priority in the accession<br />

process with the aim of enhancing the effectiveness of<br />

the Romanian Nuclear Regulatory Authority and improving<br />

its competence and independent technical assessment capability.<br />

The type of intervention accomplished considered<br />

Operation and New Build<br />

Overview of PHARE Projects Implemented in Romania Between 1997 and 2008 for Enhancing the Nuclear Safety Level ı Radian Sanda, Benoit Zerger, Giustino Manna and Brian Farrar


<strong>atw</strong> Vol. 60 (<strong>2<strong>01</strong>5</strong>) | Issue 1 ı January<br />

both the organisational and human dimensions of the Regulatory<br />

Authority, intervening on its operating procedures,<br />

capacity to equip itself with adequate Quality Management<br />

System and Procedures, and on the processes affecting<br />

the output of the Regulatory Authority activities.<br />

The intervention on the human dimension, i.e. the staff,<br />

of the Regulator was done by means of the implementation<br />

of targeted training. The transfer of know-how took place<br />

not only in theoretical terms but by exploiting opportunities<br />

of “learning by doing”, which allowed the staff to develop<br />

their skills and competences whilst approaching the<br />

open issues they were called to analyse and tackle. For example,<br />

the PHARE assistance for the implementation of the<br />

two Council Directives inherent radiation protection were<br />

combined with assistance for the revision of the regulations<br />

on radiation safety in the areas of radiotherapy, radio diagnosis,<br />

industry and nuclear medicine and the codes of<br />

practice for Dosimetry – in other words, the staff learned<br />

what the purposes and the meaning of the Council Directives<br />

were, while they were mentored on how to implement<br />

them. Furthermore, the assistance also supported CNCAN<br />

in enhancing its competences with respect to the tasks inherent<br />

in the Cernavoda NPP Unit 1 licensing process, the<br />

safety related seismic evaluation of the Cernavoda NPP, and<br />

the analysis of the of PSA for Cernavoda Unit 1.<br />

The projects which improved the Regulatory Authority<br />

competences in emergency management highlighted the<br />

need to consider the inter-institutional links whilst carrying<br />

out certain interventions. For this reason, the project<br />

on the early warning system for Cernavoda not only benefited<br />

the Regulatory Authority, but also the Ministry of<br />

Administration and Interior (MI) and the Ministry of Environment<br />

and Waters Management (MEWM). The PHARE<br />

projects also emphasised the need for attention to the<br />

trans-boundary effects of accidents.<br />

The projects also provided tools for the improvement of<br />

the Quality Management System of CNCAN, of the working<br />

methodology and performances of the Authority in inspection<br />

practices and emergency preparedness and in the conception<br />

and implementation of regulations, considering<br />

the relevant international and Western practices and legislation.<br />

The PHARE projects in support of radioactive waste<br />

management targeted several institutions, including<br />

CNCAN, all involved in the radioactive waste management<br />

area. These projects benefited from the opportunity to exploit<br />

synergies by addressing radioactive waste management<br />

issues which were a common denominator among<br />

the considered accession countries. The methodology adopted<br />

was similar to that followed in the implementation<br />

of the support to the Regulatory Authority, in the sense that<br />

the transfer of the EU knowledge and practices took place<br />

within the process of revision of the methods and practices<br />

adopted in the beneficiary’s country. Moreover, some projects<br />

focusing on the repository of Baita Bihor, provided<br />

direct guidance in the Safety Assessment for the Repository,<br />

the application of best EU practices in the upgrading<br />

and licensing of Baita-Bihor Repository, and its Preliminary<br />

Safety Analysis Report.<br />

Furthermore, the PHARE interventions aimed at supporting<br />

the establishment of the National Agency for Radioactive<br />

Waste (ANDRAD) and provided assistance to the<br />

implementation of the necessary separation of tasks and<br />

responsibilities between this Agency, CNCAN and the Nuclear<br />

Agency.<br />

The projects also provided training for developing the<br />

local skills, including those of the nuclear operator.<br />

While observing that in general there were 7 institutions<br />

involved in the projects’ implementation, the main<br />

beneficiary was the National Nuclear Regulatory Authority<br />

(CNCAN). CNCAN was involved not only in all the RA supporting<br />

projects, but also in four other PHARE projects supporting<br />

RWM. SNN was involved in two projects: the OSA<br />

project and one of the RWM projects. The other players<br />

were involved in one project each. The overall involvement<br />

distribution is illustrated in Figure 3.<br />

Although in each of the three improvement areas targeted<br />

by the projects there were pauses – for example, two<br />

pauses while implementing the PHARE projects in support<br />

of RA and RWM – at the country level the effort was much<br />

more continuous and extended to a period of 12 years (see<br />

Figure 4). It is worth to consider that in order to horizontally<br />

transfer the knowledge obtained by the implementing<br />

a project, some time is needed after the project is completed.<br />

After the 1 January 2007 (the day of Romania’s accession<br />

to the EU) there were two more PHARE projects implemented<br />

in Romania. Both of them addressed the field of RA<br />

– one of them aimed at improving the quality of the PSA<br />

| | Fig. 3.<br />

Distribution of beneficiaries among the PHARE projects.<br />

OPERATION AND NEW BUILD 19<br />

| | Fig. 4.<br />

PHARE projects implementation timeline (red: Regulatory Authority; green: Radwaste Management; blue: On-Site Assistance).<br />

Operation and New Build<br />

Overview of PHARE Projects Implemented in Romania Between 1997 and 2008 for Enhancing the Nuclear Safety Level ı Radian Sanda, Benoit Zerger, Giustino Manna and Brian Farrar


<strong>atw</strong> Vol. 60 (<strong>2<strong>01</strong>5</strong>) | Issue 1 ı January<br />

OPERATION AND NEW BUILD 20<br />

analysis performed by the CNCAN’s staff and the other one<br />

aimed at improving CNCAN’s capabilities regarding the regulatory<br />

aspects of NORM and TENORM related activities.<br />

As for the staff training strategy, while observing the<br />

chronology of project implementation, it can be easily seen<br />

that the majority of the effort was directed at training of<br />

the staff of the CNCAN. In fact, the CNCAN’s staffs were<br />

trained continuously, on relevant topics, during the whole<br />

period of implementation of the PHARE projects. Only for<br />

specific activities the training of the personnel focussed on<br />

staff from other agencies, i.e. RMAR staff was trained for<br />

the development of radioactive WAC for waste packages<br />

to ensure their safe transportation, handling, storage and<br />

disposal. Similarly, staff from MI and from MEWM was<br />

trained on how to develop and use a notification system<br />

not only for accidents affecting Cernavoda city and NPP,<br />

but also one for accidents with trans-boundary effects. The<br />

licensee’s staff also received important training on how to<br />

characterize radioactive waste at the plant, on understanding<br />

the environmental impact of their activities and<br />

regarding the current level of radioprotection for staff,<br />

public and environment. The scientists from MER were involved<br />

in performing different calculations using various<br />

codes while preparing the PSAR for the Low-Level Radioactive<br />

Waste Repository Baita Bihor.<br />

6. Conclusions<br />

During the phase of accession to the European Union, Romania<br />

benefited of a number of PHARE projects aiming at<br />

improving the nuclear safety in the country. The implementation<br />

of the projects covered a period of about 12<br />

years and was carried out following a clear strategy of intervention.<br />

The projects targeted areas identified as having<br />

high-priority and highly impacting the nuclear safety of<br />

the country: Regulatory framework, Radioactive Waste<br />

Management and also Operation.<br />

In particular, the projects focused on the Regulatory<br />

framework and contributed both to its institutional development<br />

and to the enhancement of the skills and competences<br />

of the staff of the Safety Authority, which had the<br />

opportunity to acquire the western and international<br />

know-how and practices and incorporate them into its own<br />

practices while applying them to the issues the staff were<br />

called upon to deal with in their regulatory duties. The<br />

knowledge and skills acquired will be further used for continuously<br />

improving the in-house capabilities of the organisations<br />

involved in carrying out and controlling the nuclear<br />

activities in Romania.<br />

Together with the institutional consolidation of the<br />

Regulatory Authority, the PHARE projects produced as<br />

spin-off a series of technical documents to be used as reference<br />

in the future activities of the Safety Authorities and of<br />

the nuclear actors of the countries.<br />

This review of the selected PHARE projects has shown<br />

that the intervention on the nuclear safety of the country<br />

followed a systematic approach, with projects carried out<br />

sometimes in parallel, sometimes in series, and allowing –<br />

in the latter case – adequate time between the sequential<br />

projects for the absorption and further development of<br />

knowledge and know-how. In this way, the conception of<br />

the follow-up project was started considering a new basis.<br />

The PHARE interventions highlighted the specific inter-institutional<br />

dimension of nuclear safety in Romania<br />

improving the compatibility of the regulatory system with<br />

the country’s regulatory commitment and institutional<br />

and human resources endowment, stressing also the trans-<br />

boundary effects of some specific accidents. It is important<br />

to recognise also the role of PHARE in bringing together a<br />

number of accession countries for considering the common<br />

nuclear safety issues they were called to tackle, for<br />

example those related to Radioactive Waste Management,<br />

and identifying opportunities for cooperation; this uncovers<br />

another side of the European added value of the programme.<br />

Finally, the review of the PHARE projects has highlighted<br />

that the regulatory activities, the nuclear safety,<br />

the safety of radioactive sources, the radioprotection and<br />

the radioactive waste management programmes were addressed<br />

and enhanced during the implementation of the<br />

projects.<br />

Acknowledgements<br />

The success of the PHARE projects was based on the efforts<br />

of various stakeholders involved: the European Commission<br />

staff involved in managing the projects, the Western<br />

contractors and Eastern subcontractors that carried out<br />

the work with professionalism, achieving the successful<br />

results. It should be noted that the success of such projects<br />

is also in direct relationship with the involvement of the<br />

beneficiary organisation. All their work and efforts are appreciated<br />

and acknowledged.<br />

The PHARE programme was managed by the European<br />

Commission Directorate General for Enlargement (DG<br />

ELARG).<br />

Abbreviations<br />

AN Agentia Nucleara (Nuclear Agency)<br />

ANDRAD Agentia Nationala pentru Deseuri Radioactive<br />

(National Agency for Radioactive Waste)<br />

CANDU Canada Deuterium Uranium<br />

CNCAN Comisia Nationala pentru Controlul<br />

Activitatilor Nucleare (National Commission<br />

for Nuclear Activities Control)<br />

CWR Consortium of Western Regulators<br />

C&EEC Central and East-European Countries<br />

EC European Commission<br />

EIA Environmental Impact Assessment<br />

EU European Union<br />

EURATOM European Atomic Energy Community<br />

FEP Features, Events and Processes<br />

GRS Gesellschaft für anlagen-und Reaktor<br />

Sicherheit mbH<br />

HTS Heat Transport System<br />

IAEA International Atomic Energy Agency<br />

IPA Integrated Performance Assessment<br />

IRSN Institut de Radioprotection et de Sûreté<br />

Nucléaire<br />

MER Ministry of Education end Research<br />

MI Minister of Interior<br />

MEWM Ministry of Environment and Water<br />

Management<br />

NORM Naturally Occurring Radioactive Materials<br />

NPP Nuclear Power Plant<br />

OSA On-Site Assistance<br />

PHARE Poland, Hungary Aid for Reconstruction<br />

PHWR Pressurized Heavy Water Reactor<br />

PSA Probabilistic Safety Assessment<br />

PSAR Preliminary Safety Assessment Report<br />

QA Quality Assurance<br />

QMS Quality Management System<br />

RA Regulatory Activities<br />

RMAR Rare Metal Autonomous Authority<br />

(Regia Autonoma pentru Metale Rare)<br />

Operation and New Build<br />

Overview of PHARE Projects Implemented in Romania Between 1997 and 2008 for Enhancing the Nuclear Safety Level ı Radian Sanda, Benoit Zerger, Giustino Manna and Brian Farrar


<strong>atw</strong> Vol. 60 (<strong>2<strong>01</strong>5</strong>) | Issue 1 ı January<br />

RWM<br />

SNN<br />

SRS<br />

SSRS<br />

TENORM<br />

TSO<br />

WAC<br />

References<br />

Radioactive Waste Management<br />

Societatea Nationala “Nuclearelectrica“<br />

(National Society “Nuclearelectrica“)<br />

Sealed Radioactive Source<br />

Spent Sealed Radioactive Source<br />

Technologically Enhanced Naturally<br />

Occurring Radioactive Materials<br />

Technical Support Organization<br />

Waste Acceptance Criteria<br />

| | PHARE report: Support for Regulatory Authority Staff to improve<br />

its Capabilities with the View of Probabilistic Safety Assessment,<br />

number 2005/<strong>01</strong>7-519.03.<strong>01</strong>. Restricted<br />

| | PHARE report: Development of CNCAN capabilities regarding the<br />

regulatory aspects of Naturally Occurring Radioactive Materials<br />

(NORM) and Technologically Enhanced Naturally Occurring Radioactive<br />

Materials (TENORM) related activities, number 2005/<strong>01</strong>7-<br />

519.03.03. Restricted<br />

| | PHARE report: Romanian Regulatory Emergency Response Centre,<br />

number 5812.06.<strong>01</strong>. Restricted<br />

| | PHARE report: Early warning system – Cernavoda, number<br />

PH6.<strong>01</strong>/99(Lot 1 and 2). Restricted<br />

| | PHARE report: Nuclear Safety Regulatory Regime Consolidation,<br />

number RO.<strong>01</strong>.10.<strong>01</strong>. Restricted<br />

| | PHARE report: Support to the Romanian Nuclear Regulatory<br />

Authority (CNCAN) in the licensing review of Fire Protection,<br />

Overpressure Protection of Reactor Primary Circuit and Main Steam<br />

Line Design Safety Issues in Cernavoda 1-NPP, number<br />

RO.<strong>01</strong>.10.02. Restricted<br />

| | PHARE report: Transfer of Western European Methodology to the<br />

Nuclear Safety Authority of Romania (2nd Phase),<br />

number RO/RA/02. Restricted<br />

| | PHARE report: Support to CNCAN – seismic evaluation –<br />

Cernavoda NPP, number RO/TS/<strong>01</strong>. Restricted<br />

| | PHARE report: Safety Assessment of the Radioactive X-Waste<br />

Repository of Baita Bihor, number 006-RO/PHARE-SCR/A6-<strong>01</strong>.<br />

Restricted<br />

| | PHARE report: Preliminary Safety Analysis Report for the Low-Level<br />

Radioactive Waste Repository Baita Bihor, Romania, number<br />

632.08.<strong>01</strong>. Restricted<br />

| | PHARE report: Up-Grading of the Baita-Bihor Repository for Institutional<br />

Radioactive Waste in Romania, number 5812.06.03.<br />

Restricted<br />

| | PHARE report: Technical assistance to Romania in establishing the<br />

activity of National Agency for Radioactive Waste (ANDRAD),<br />

number 5812.06.02. Restricted<br />

| | PHARE report: Technical Basis and Methodological Approach for<br />

Waste Acceptance Criteria, number PH4.10/94. Restricted<br />

| | PHARE report: Management of Spent Sealed Radioactive Sources<br />

in Central and Eastern Europe – Interim Repor“, number SSRS/P<strong>01</strong>.<br />

Restricted<br />

| | PHARE report: Characterization of radioactive waste at Cernavoda<br />

NPP, number 5812.06.04. Restricted<br />

| | PHARE report: Modernisation Project for Cernavoda NNP2 –<br />

Environmental Impact Assessment, number 009-RO/PHARE-SCR/<br />

A6-C. Restricted<br />

Authors<br />

Radian Sanda, Benoit Zerger, Giustino Manna and Brian Farrar<br />

Joint Research Centre (JRC) of the European Commission (EC)<br />

Westerduinweg 3<br />

1755 ZG Petten/The Netherlands<br />

OPERATION AND NEW BUILD 21<br />

Imprint<br />

| | Editorial Advisory Board<br />

Prof. Dr. Dr.-Ing. e. h. Adolf Birkhofer<br />

Dr. Peter Fritz<br />

Dipl.-Ing. Ulrich Gräber<br />

Dr. Ralf Güldner<br />

Dr. Ulrich Hartmann<br />

Dr. Norbert Haspel<br />

Dr. Walter Hohlefelder<br />

Prof. Dr. Gerd Jäger<br />

Dipl.-Ing. Ulf Kutscher<br />

Jörg Michels<br />

Dr. Joachim Ohnemus<br />

Dr. Astrid Petersen<br />

Prof. Dr. Winfried Petry<br />

Dr. Wolfgang Steinwarz<br />

Prof. Dr. Bruno Thomauske<br />

Stefan vom Scheidt<br />

Dr. Hannes Wimmer<br />

Ernst Michael Züfle<br />

| | Editorial<br />

Christopher Weßelmann<br />

Im Tal 121, 45529 Hattingen, Germany<br />

Phone +49 2324-4397723,<br />

Fax +49 2324-4397724<br />

E-mail: editorial@atomwirtschaft.com<br />

| | Publisher<br />

INFORUM Verlags- und<br />

Verwaltungsgesellschaft mbH<br />

Robert-Koch-Platz 4, 1<strong>01</strong>15 Berlin, Germany<br />

Phone: +49 30 498555-0, Fax: +49 30 498555-19<br />

www.nucmag.com<br />

| | General Manager<br />

Christian Wößner, Berlin, Germany<br />

| | Advertising and Subscription<br />

Sibille Wingens<br />

Robert-Koch-Platz 4, 1<strong>01</strong>15 Berlin, Germany<br />

Phone: +49 30 498555-10, Fax: +49 30 498555-19<br />

E-mail: sibille.wingens@nucmag.com<br />

| | Prize List for Advertisement<br />

Valid as of 1 January <strong>2<strong>01</strong>5</strong><br />

Published monthly, 11 issues per year<br />

Germany:<br />

Per issue/copy (incl. VAT, excl. postage) 16.- €<br />

Annual subscription (incl. VAT and postage) 176.- €<br />

All EU member states without VAT number:<br />

Per issue/copy (incl. VAT, excl. postage) 16.- €<br />

Annual subscription (incl. VAT, excl. postage)176.- €<br />

EU member states with VAT number<br />

and all other countries:<br />

Per issues/copy (no VAT, excl. postage) 14.95 €<br />

Annual subscription (no VAT, excl. postage)164.49 €<br />

| | Copyright<br />

The journal and all papers and photos contained in<br />

it are protected by copyright. Any use made thereof<br />

outside the Copyright Act without the consent of<br />

the publisher, INFORUM Verlags- und Verwaltungsgesellschaft<br />

mbH, is prohibited. This applies to reproductions,<br />

translations, microfilming and the input<br />

and incorporation into electronic systems. The<br />

individual author is held responsible for the contents<br />

of the respective paper. Please address letters<br />

and manuscripts only to the Editorial Staff and not<br />

to individual persons of the association´s staff. We<br />

do not assume any responsibility for unrequested<br />

contributions.<br />

Signed articles do not necessarily represent the<br />

views of the editorial.<br />

| | Setting<br />

Waltraud Zimmer, Bonn, Germany<br />

Phone: +49 228 2428867, Fax: +49 228 2428967<br />

E-Mail: w.zimmer@atomwirtschaft.de<br />

| | Printing<br />

in puncto druck + medien GmbH, Bonn<br />

ISSN 1431-5254<br />

Operation and New Build<br />

Overview of PHARE Projects Implemented in Romania Between 1997 and 2008 for Enhancing the Nuclear Safety Level ı Radian Sanda, Benoit Zerger, Giustino Manna and Brian Farrar


<strong>atw</strong> Vol. 60 (<strong>2<strong>01</strong>5</strong>) | Issue 1 ı January<br />

OPERATION AND NEW BUILD 22<br />

Nuclear Power Plant Olkiluoto 3 –<br />

Containment Leakage Test Under<br />

Extreme Conditions<br />

Tobias Fleckenstein<br />

Modern nuclear power plants place high demands on the design and execution of safety checks. TÜV SÜD specialists<br />

supported the containment leakage test for the largest-capacity third generation nuclear power plant in the world –<br />

Olkiluoto 3 in Finland. The experts successfully met the challenges presented by exceptional parameters of vessel<br />

volume and pressure.<br />

To test a nuclear containment vessel<br />

for pressure-resistance and leak-tightness,<br />

it is filled with compressed air<br />

while temporarily installed instruments<br />

monitor a number of parameters,<br />

including any potential drops in<br />

pressure. Although these examinations<br />

are routinely performed all over<br />

the world, the test of the Finnish reactor<br />

Olkiluoto 3 in February 2<strong>01</strong>4 set<br />

a new benchmark: It was the first pressure<br />

and leak-tightness test ever conducted<br />

on an EPR unit, and the first<br />

pre-operational test of a reactor containment<br />

conducted in Europe since<br />

20<strong>01</strong>.<br />

The EPR reactor is a third generation<br />

pressurized water reactor (PWR),<br />

designed and built by French supplier<br />

AREVA. The construction to date has<br />

used about 200,000 m 3 of concrete,<br />

and at the height of the project there<br />

were 700 sub-contractors and up to<br />

4,300 workers from 60 countries at the<br />

site. In order to prepare for the safety<br />

check, TÜV SÜD experts carried out<br />

careful planning and logistics both onsite<br />

and off-site, and in close cooperation<br />

with AREVA and with TVO, the<br />

Finnish owner company of Olkiluoto 3.<br />

and includes a steel liner, which ensures<br />

a continuous surface, including<br />

the basemat. Inside the containment<br />

are many of the reactor’s key components:<br />

the whole reactor coolant system,<br />

the core catcher, the reactor pressure<br />

vessel, the steam generators, the<br />

in-containment refuelling water storage<br />

tank and part of the main feedwater<br />

lines.<br />

The inner containment shell is<br />

the final barrier in the EPR reactor’s<br />

defence strategy and designed to<br />

withstand high pressures. It is intended<br />

to effectively contain without<br />

leakage the total primary coolant<br />

system inventory released into the<br />

containment volume. Containment<br />

leak rate tests are mandatory to specifically<br />

assure two aspects of a power<br />

plant’s safety. Firstly, that the leakage<br />

through the containment itself or<br />

through the components that penetrate<br />

it, doesn’t exceed specified allowable<br />

leakage rates. Secondly, that the<br />

integrity of the containment structure<br />

is maintained during its service<br />

life.<br />

Acceptance criteria for leak rates<br />

are determined so as to demonstrate<br />

that the leak rate assumed in the<br />

plant’s safety analysis and approved<br />

by the regulatory agency will be maintained<br />

throughout the plant’s operating<br />

lifetime.<br />

The containment of Olkiluoto 3 is<br />

unique in that the vessel’s volume is<br />

80,000 m 3 and the test pressure<br />

reached up to 6 bar while measurements<br />

were carried out over a period<br />

of ten days. The demands that these<br />

parameters placed on the test instruments<br />

were so extreme that none<br />

of the involved manufacturers were<br />

able to provide assurance that their<br />

sensors would withstand these extreme<br />

conditions and retain their accuracy.<br />

However, high accuracy is necessary<br />

for sufficient data quality and<br />

data safety, and ultimately for a reliable<br />

measurement of the leakage<br />

rate.<br />

To add to the challenge, the conventional<br />

method of passing the individual<br />

signal transmission lines of the<br />

instruments through the reactor walls<br />

Unique containment<br />

parameters<br />

While the outer containment shell<br />

provides protection against external<br />

hazards, such as an airplane crash, the<br />

inner containment is designed to confine<br />

the mass of radioactive materials<br />

inside the structure. If an accident<br />

causes radioactive steam to escape the<br />

internal system, then the containment<br />

shell plays a critical role in preventing<br />

the release of radioactive material into<br />

the environment. It typically consists<br />

of a structure enclosing the reactor<br />

pressure vessel, equipment access<br />

hatches, air lock doors, seals, isolation<br />

valves, mechanical and electrical penetrations,<br />

and a suppression pool.<br />

The inner containment of Olkiluoto<br />

3 is made of pre-stressed concrete<br />

| | Fig. 1.<br />

TÜV SÜD specialists used the autoclave system of the Technical University in Munich,<br />

Germany, to simulate the project test conditions. Courtesy: TÜV SÜD Industrie Service GmbH.<br />

Operation and New Build<br />

Nuclear Power Plant Olkiluoto 3 – Containment Leakage Test Under Extreme Conditions ı Tobias Fleckenstein


<strong>atw</strong> Vol. 60 (<strong>2<strong>01</strong>5</strong>) | Issue 1 ı January<br />

could not be used at Olkiluoto 3. Instead,<br />

the electronic data recording<br />

systems had to be placed inside the<br />

containment vessel for the entire test<br />

period and had been connected via<br />

three co-axial cables to the analysing<br />

laptop located outside the containment.<br />

The systems inside the containment<br />

were thus also exposed to an<br />

absolute pressure of over 6 bar, in addition<br />

to ambient temperatures of<br />

around 30 °C and high levels of humidity.<br />

Careful preparations<br />

are key<br />

To execute the test, 75 temperature<br />

sensors and 15 humidity sensors, connected<br />

by ten kilometres of cable, had<br />

to be installed and correctly interlinked.<br />

They also had to be able to<br />

withstand the extreme test pressure<br />

for the entire test period. Previous<br />

leak testing had only been performed<br />

at significantly lower pressures, and<br />

some materials used for electronic insulation<br />

are known to undergo<br />

changes, bearing a risk for short-circuits<br />

and fires. The architecture of the<br />

measurement system had to be designed<br />

in such a way that the testing<br />

could continue even if there was a<br />

fault in the coaxial cables used to communicate<br />

with the data recording system<br />

and for the transmission of data.<br />

To ensure the efficient and effective<br />

execution of the Okiluoto 3 test,<br />

the TÜV SÜD specialists completed a<br />

thorough preparation phase prior to<br />

the project test. The objective was to<br />

determine how the equipment would<br />

handle pressures of 6 bar, whether<br />

the measurement precision would be<br />

| | Fig. 2.<br />

Measuring equipment is being placed inside the autoclave system in order to assess how the equipment<br />

will handle the extreme conditions of the Okiluoto 3 project environment.<br />

Courtesy: TÜV SÜD Industrie Service GmbH.<br />

compromised, and how the architecture<br />

of the system needed to be configured.<br />

Parts of the preparation phase<br />

were carried out at the autoclave system<br />

of the Technical University in Munich,<br />

Germany, where the project test<br />

conditions could be simulated.<br />

The on-site test preparation began<br />

with the set-up of the measurement<br />

system. In the process, TÜV SÜD specialists<br />

used more than ten kilometres<br />

of cables to connect all of the sensors<br />

to the data acquisition system and<br />

computers. Once the system was set<br />

up, the specialists undertook a pretest<br />

quality check. In order to further<br />

reduce uncertainty of the containment<br />

leak test, the air in the containment<br />

shell was homogenised by running<br />

four compressor units with dryers<br />

and filters for 24 hours prior to the<br />

execution of the test.<br />

Using information<br />

technology to achieve<br />

higher safety integrity<br />

In addition to setting up and configuring<br />

the hardware, the software required<br />

to run the tests needed to be<br />

developed to accommodate the extreme<br />

parameters. On-site engineers<br />

of TÜV SÜD would have to be able to<br />

quantify leakage volumes and monitor<br />

the real-time values of pressure,<br />

temperature, humidity, mass flow and<br />

leak rates. This data would allow for<br />

the source of a leak to be identified.<br />

The software was successfully developed<br />

by TÜV SÜD and verified<br />

by Germany’s national accreditation<br />

body DAkkS under ISO 17025. It included<br />

an emergency plan for on-site<br />

engineers in case measurement devices<br />

stopped working or a loss of data<br />

occurred. Furthermore, it covered the<br />

analysis of a number of what-if scenarios<br />

and a simulation of potential failures<br />

under laboratory conditions. It<br />

was thus aligned to the requirements<br />

of the project test, including the number<br />

of measurement points and additional<br />

evaluation stages.<br />

To achieve higher standards of<br />

safety integrity, the hardware architecture<br />

was guided by the principle of<br />

diverse redundancy. Redundancy<br />

refers to the duplication of systems,<br />

which enables the overall process<br />

to continue even if one system fails.<br />

In addition, diversity reduces the<br />

impact of so-called common cause<br />

failures, whereby multiple sensors<br />

may fail simultaneously due to a common<br />

cause. To reduce this type of risk,<br />

different configurations and operating<br />

principles are used across the<br />

sensors.<br />

TÜV SÜD experts set up all instruments<br />

as redundant and diverse systems,<br />

including three co-axial cables<br />

provided by the plant supplier AREVA.<br />

If an instrument inside the containment<br />

shell failed, the communication<br />

could be switched to an alternative<br />

device, which would also use a<br />

different communication protocol.<br />

The overall architecture was designed<br />

to allow for measurements to continue<br />

without interruption, even in<br />

the case of instrument failure. The<br />

measurement accuracy was also<br />

found to be within the required tolerance<br />

range.<br />

Executing the leakage test<br />

Once the quality check and containment<br />

homogenisation had been completed,<br />

the project test could finally<br />

begin. The signals from all measuring<br />

devices were processed by two data<br />

acquisition units, which recorded the<br />

data of all sensors at a minimum rate<br />

of ten times per hour. These devices<br />

used internal digital multi-metres and<br />

transferred their data to two separate<br />

computers, one of which was configured<br />

as a backup unit. The data<br />

was stored in its raw format (ohms,<br />

volts, Hz) and subsequently converted<br />

using an online software, which<br />

also applied calibration curves for all<br />

pressure, temperature and humidity<br />

sensors.<br />

To execute the test, the TÜV SÜD<br />

specialists determined a range of variables:<br />

• The free gas volume of the containment<br />

shell: This parameter was<br />

one of the key requirements to<br />

later calculate the leakage volume.<br />

OPERATION AND NEW BUILD 23<br />

Operation and New Build<br />

Nuclear Power Plant Olkiluoto 3 – Containment Leakage Test Under Extreme Conditions ı Tobias Fleckenstein


<strong>atw</strong> Vol. 60 (<strong>2<strong>01</strong>5</strong>) | Issue 1 ı January<br />

OPERATION AND NEW BUILD 24<br />

| | Fig. 3.<br />

TÜV SÜD specialists calibrate the inlet pipe – a requirement to accurately determine the free volume.<br />

Courtesy: TÜV SÜD Industrie Service GmbH.<br />

Although it can, in principle, be<br />

calculated, the TÜV SÜD specialists<br />

opted to measure it to reduce<br />

uncertainty and further increase<br />

the accuracy of the test results.<br />

All of the variables necessary to<br />

determine the incoming mass<br />

flow for pressurisation were measured<br />

every ten seconds. These included<br />

the ambient pressure and<br />

the temperature behind the flow<br />

section. The differential pressure<br />

across the flow section and the<br />

gauge pressure in front of the<br />

nozzle were measured twice using<br />

independent pressure transmitters,<br />

connected to defined tappings.<br />

• Temperature and humidity: The<br />

vapour pressure inside the containment<br />

shell was measured using<br />

twelve relative humidity sensors<br />

and three dew-point mirrors. To<br />

determine the dry-bulb temperature<br />

of the containment air, TÜV<br />

SÜD specialist employed four-wire<br />

resistance temperature device.<br />

• The absolute pressure inside the<br />

containment.<br />

Using high standards to<br />

guide testing<br />

The ANSI/ANS 56.8-2002 standard of<br />

the American Nuclear Society outlines<br />

the standards for the containment<br />

leakage testing requirements of<br />

Olkiluoto 3. It provides a basis for determining<br />

leakage rates through the<br />

primary reactor containment system<br />

of light-water-cooled nuclear power<br />

plants. Together with the testing instructions<br />

of the system construction<br />

company, the standard guided the<br />

work of the TÜV SÜD specialists, and<br />

evaluations were completed at various<br />

levels during testing.<br />

The standards for the leak test<br />

were also in line with the safety recommendations<br />

and requirements<br />

used in the design of Olkiluoto 3.<br />

These include the European utility requirements<br />

defined by European<br />

power companies as well as the safety<br />

and quality recommendations of the<br />

International Atomic Energy Agency<br />

(IAEA). In Finland, nuclear safety instructions<br />

are issued by the Finnish<br />

Radiation and Nuclear Safety Authority<br />

(STUK), which also controls compliance<br />

with them.<br />

In the Olkiluoto 3 project, TÜV<br />

SÜD experts enabled further testing<br />

to continue without delay by analysing<br />

all recorded data on site. This included<br />

pressure, temperature, humidity<br />

and leakage mass flow curves<br />

for all evaluation levels. With the<br />

data acquisition system recording<br />

measurements continuously, all components<br />

of the leak-tightness assessment<br />

were successfully completed in<br />

accordance with requirements:<br />

• The first Loss of Coolant Accident<br />

test (LOCA);<br />

• The design pressure test;<br />

• The Initial Structural Integrity Test<br />

(ISIT); and<br />

• The second LOCA test.<br />

Conclusion<br />

Pressure and leak-tightness tests play<br />

an important role in assessing nuclear<br />

safety and form a significant milestone<br />

in the completion of the Olkiluoto<br />

3 project. As it is one of the<br />

largest industrial projects ever carried<br />

out in Northern Europe, the design,<br />

setup and execution of the tests place<br />

high demands on the expertise of engineers<br />

and specialists. Critical to the<br />

success of the measurement process<br />

were careful preparations and logistics,<br />

carried out both on-site and offsite<br />

prior to the project test.<br />

Author<br />

Tobias Fleckenstein,<br />

Plant Engineering,<br />

TÜV SÜD Industrie Service GmbH<br />

Measurement Technology<br />

Department<br />

Westendstraße 199<br />

80686 Munich/Germany<br />

Operation and New Build<br />

Nuclear Power Plant Olkiluoto 3 – Containment Leakage Test Under Extreme Conditions ı Tobias Fleckenstein


<strong>atw</strong> Vol. 60 (<strong>2<strong>01</strong>5</strong>) | Issue 1 ı January<br />

Paradigmenwechsel im Beförderungsrecht oder<br />

am „Flaschenhals“<br />

Hanns Näser<br />

Im gerade begonnenen Jahr sind höchst bedeutsame Entscheidungen des Bundesverfassungsgerichts und des Bundesverwaltungsgerichts<br />

auf dem Gebiet des Atomrechts von erheblicher Tragweite zu erwarten. Insbesondere die<br />

Entscheidung des Bundesverfassungsgerichts zu dem mit der 13. Novelle zum Atomgesetz (vom 31.07.2<strong>01</strong>1 Bundesgesetzblatt<br />

(BGBl) I 1704) erfolgten „Atomausstieg“ wird mit großer Spannung erwartet, weil neben den mit den<br />

Entscheidungen verbundenen weitreichenden Folgen auch grundsätzliche Fragen der Verfassung insbesondere zum<br />

Art. 12 Abs. 1 Grundgesetz (GG) und Art. 14 GG zu beantworten sind.<br />

Für das Bundesverwaltungsgericht steht die Frage zur Entscheidung<br />

an, ob sie die Revision gegen die Brunsbüttel-<br />

Entscheidung des Oberverwaltungsgerichts (OVG) Schleswig-Holstein<br />

zulässt, die aus Sicht der Kläger wesentliche<br />

Grundlagen der Verantwortungsabgrenzung zwischen Exekutive<br />

und Judikative verschoben hat.<br />

Gegenüber diesen grundlegenden Entscheidungen ist<br />

die erwartete Entscheidung des OVG Lüneburg zum nuklearen<br />

Transportrecht von untergeordneter Bedeutung,<br />

obwohl sie auf diesem Rechtsgebiet einen Paradigmenwechsel<br />

vollziehen wird. Es geht bei dieser Entscheidung<br />

um die Frage, ob und wann eine Klagebefugnis eines Dritten<br />

im nuklearen Transportrecht anerkannt werden kann,<br />

genauer, unter welchen Voraussetzungen ein Dritter gegen<br />

eine atomrechtliche Beförderungsgenehmigung nach § 4<br />

Abs. 1 Atomgesetz (AtG) klagebefugt ist.<br />

Zur komplexen und vielschichtigen Vorgeschichte, die<br />

nicht leicht zu entwirren ist:<br />

Über Jahrzehnte hatte das Verwaltungsgericht (VG)<br />

Braunschweig als das nach § 52 Nr. 2 Satz 1 VwGO örtlich<br />

zuständige Gericht für Anfechtungsklagen gegen Beförderungsgenehmigungen<br />

nach § 4 AtG, die vom Bundesamt<br />

für Strahlenschutz (BfS) mit Sitz in Salzgitter (früher von<br />

der Physikalisch-Technischen Bundesanstalt (PTB) mit Sitz<br />

in Braunschweig), erteilt werden, die Zulässigkeit derartiger<br />

Klagen wegen fehlender Klagebefugnis verneint. Das<br />

OVG Lüneburg als Berufungsgericht hatte diese Auffassung<br />

geteilt.<br />

Gegenstand der zur Entscheidung anstehenden Klage<br />

ist eine atomrechtliche Beförderungsgenehmigung des<br />

Bundesamts für Strahlenschutz aus dem Jahre 2003 zur Beförderung<br />

von HAW-Glaskokillen (HAW: High Active Waste)<br />

aus der Wiederaufarbeitungsanlage La Hague in das<br />

Transportbehälterlager Gorleben. Nach Durchführung des<br />

Transports im Dezember 2003 haben die Kläger die Feststellung<br />

der Rechtswidrigkeit dieser Beförderungsgenehmigung<br />

beantragt. Eine derartige Feststellungsklage ist<br />

zulässig, wenn ein besonderes Rechtsschutzinteresse besteht.<br />

Ein Kläger ist Eigentümer eines von ihm bewohnten<br />

Hauses, das ca. 650 m von der Umschlagsanlage in Dannenberg<br />

entfernt ist. Der andere Kläger ist Miteigentümer<br />

eines von ihm bewohnten Hauses, das in unmittelbarer Nähe<br />

der Transportstrecke von Dannenberg zum Transportbehälterlager<br />

Gorleben liegt. Diese örtliche Beziehung der<br />

Kläger zur Transportroute ist der wichtige Beurteilungsmaßstab<br />

für die Klagebefugnis, hierauf wird zurückzukommen<br />

sein.<br />

Das Verwaltungsgericht Braunschweig hat entsprechend<br />

seiner ständigen Rechtsprechung die Klagen als unzulässig<br />

zurückgewiesen. Die Anträge der Kläger auf Zulassung der<br />

Berufung hat das OVG Lüneburg abgelehnt. Das Bundesverfassungsgericht<br />

hat die Beschlüsse über die Nichtzulassung<br />

der Berufung aufgehoben und die Streitsachen an das OVG<br />

Lüneburg zurückverwiesen, weil durch diese Entscheidungen<br />

die Kläger in ihrem Grundrecht auf effektiven Rechtschutz<br />

aus Art. 19 Abs. 4 Satz 1 GG verletzt seien (https://<br />

www.bundesverfassungs-gericht.de/entscheidungen/rk20<br />

09<strong>01</strong>21_1bvr252406.html). Das OVG Lüneburg habe die<br />

Anforderungen an die Zulassung der Berufung überspannt<br />

und sei in der Begründung nur unzureichend auf die von<br />

den Klägern geltend gemachten Argumente eingegangen.<br />

Das OVG Lüneburg hat entsprechend den Vorgaben des<br />

Bundesverfassungsgerichts die Berufung zugelassen, allerdings<br />

an seiner bisherigen Rechtsprechung festgehalten,<br />

die Unzulässigkeit der Klagen festgestellt und die Revision<br />

zugelassen.<br />

Das Bundesverwaltungsgericht hat den Revisionen der<br />

Kläger stattgegeben mit der Entscheidung vom 14.03.2<strong>01</strong>3<br />

(http://www.bverwg.de/entscheidungen/verwan-dte_dokumente.php?az=BVerwG+7+C+34.11).<br />

Das Bundesverwaltungsgericht<br />

geht zwar wie das OVG Lüneburg davon<br />

aus, dass das Gefahrgutrecht als solches keinen Drittschutz<br />

gewährt. Die unterschiedlichen Schutzkonzepte<br />

für ortsfeste Anlagen und Einrichtungen in der Strahlenschutzverordnung<br />

(effektive Dosis am ungünstigsten Ort)<br />

und für Beförderungen im Gefahrgutrecht (effektive Dosis<br />

an der Außenfläche des Gefahrguts) sind aus Sicht des<br />

Gerichts nicht ausschlaggebend für eine unterschiedliche<br />

Bewertung des Drittschutzes. Diesen leitet es vielmehr<br />

aus den mit sicherheitsrechtlichen Vorgaben angereicherten<br />

Genehmigungsvoraussetzungen zur Beförderung von<br />

Kernbrennstoffen ab, und zwar der Gewährleistung der<br />

erforderlichen Vorsorge gegen Schäden und des erforderlichen<br />

Schutzes gegen Störmaßnahmen oder sonstigen<br />

Einwirkungen Dritter. Unter Verweis auf die vergleichbaren<br />

Regelungsgehalte der § 6 Abs. 2 Nr. 2 und 3 AtG für die<br />

Zwischenlagerung von Kernbrennstoffen und § 7 Abs. 2<br />

Nr. 3 AtG und 5 AtG für Kernkraftwerke mit den Genehmigungsvoraussetzungen<br />

des § 4 Abs. 2 Nr. 3 und 5 AtG<br />

für die Beförderung von Kernbrennstoffen weitet es den<br />

für ortsfeste Einrichtungen (§ 6 AtG) und für das Anlagengenehmigungsrecht<br />

(§ 7 AtG) seit langem bestehenden<br />

Drittschutz nunmehr auch auf das Beförderungsrecht<br />

aus.<br />

Worum geht es beim Drittschutz? Anknüpfend an Art.<br />

19 Abs. 4 GG gewährt das Verwaltungsprozessrecht im<br />

Grundsatz subjektiven Rechtsschutz. Eine Klage ist danach<br />

nur zulässig, wenn der Kläger die Möglichkeit der Verletzung<br />

eigener Rechtspositionen geltend macht. Beruft er<br />

sich hingegen auf die Verletzung objektiven Rechts, wäre<br />

die Klage grundsätzlich unzulässig.<br />

Die Möglichkeit der Verletzung eigener Rechtsposition<br />

kann beispielsweise neben dem Adressaten eines Verwaltungsakts<br />

auch ein Dritter geltend machen, sofern er durch<br />

den Verwaltungsakt in seinen Rechten beeinträchtigt<br />

sein kann. Der betreffende Verwaltungsakt muss danach<br />

Rechtswirkungen auch gegenüber dem Dritten entfalten<br />

SPOTLIGHT ON NUCLEAR LAW 25<br />

Spotlight on Nuclear Law<br />

Paradigm Shift in Transport Legislation or Rather at the “Bottleneck” ı Hanns Näser


<strong>atw</strong> Vol. 60 (<strong>2<strong>01</strong>5</strong>) | Issue 1 ı January<br />

SPOTLIGHT ON NUCLEAR LAW 26<br />

| | Transport von Kernmaterial<br />

(sog. mehrpoliges Rechtsverhältnis). Beispiele hierfür sind<br />

umwelt- und atomrechtliche Genehmigungen, die den Genehmigungsinhaber<br />

begünstigen und Nachbarn in ihren<br />

Rechten beeinträchtigen können.<br />

Eine Beeinträchtigung subjektiver Rechte kann allerdings<br />

nur dann bestehen, wenn ein durch die Genehmigung<br />

potenziell beeinträchtigter Dritter sich auf eine<br />

Rechtsnorm berufen kann – deren Verletzung er rügt – die<br />

nicht nur dem allgemeinen Interesse dient, sondern auch<br />

seinen Individualinteressen zu dienen bestimmt ist.<br />

Wann eine Rechtsnorm auch Individualinteressen<br />

dient, ist durch Auslegung der Norm zu ermitteln. Dabei<br />

ist insbesondere zu bewerten, ob die Norm individualisierende<br />

Tatbestandsmerkmale enthält,<br />

d.h. neben der Allgemeinheit<br />

auch den Schutz eines bestimmten<br />

abgrenzbaren Personenkreises intendiert<br />

(sog. Schutznormtheorie). Die<br />

Schutznormtheorie wird zunehmend<br />

durch europarechtliche Einflüsse<br />

und Vorgaben zurückgedrängt.<br />

So haben inzwischen bestimmte anerkannte<br />

Vereinigungen Klagebefugnis<br />

bei wichtigen umweltrechtlichen<br />

Großvorhaben, ohne die Verletzung<br />

eigener Rechte geltend machen zu<br />

müssen (Umweltrechtsbehelfsgesetz<br />

vom 07.12.2006 in der Fassung vom<br />

07.08.2<strong>01</strong>3 http://www.gesetze-iminternet.de/umwrg/).<br />

Die Vorgaben des Bundesverwaltungsgerichts,<br />

an die das OVG Lüneburg<br />

gebunden ist, bedeuten allerdings<br />

keine Abkehr von der Schutznormtheorie.<br />

Das Bundesverwaltungsgericht<br />

hat vielmehr den Drittschutz<br />

wegen der Wortgleichheit der o.g. Genehmigungsvoraussetzungen<br />

auch auf die Beförderung von Kernbrennstoffen<br />

ausgedehnt und den Individualrechtsschutz<br />

aus der übergeordneten Schutzzweckbestimmung des § 1<br />

Abs. 1 Nr. 2 AtG abgeleitet. Nach dieser Bestimmung bezieht<br />

sich der Schutzzweck des Atomgesetzes auch auf den<br />

Schutz des Lebens, der Gesundheit und von Sachgütern<br />

vor den Gefahren der Kernenergie. Dieser Schutzzweck<br />

schließt das Beförderungsrecht ein. Allerdings ist bei Beförderungsvorgängen,<br />

anders als bei ortsfesten Anlagen<br />

und Einrichtungen, der abgrenzbare geschützte Personenkreis<br />

nur schwer zu bestimmen. Dies gilt erst recht dann,<br />

wenn die Beförderungsstrecke, wie im Regelfall, nicht in<br />

der Genehmigungsentscheidung festgelegt ist. Denn für<br />

die Abgrenzung vom geschützten zum nicht geschützten<br />

Personenkreis ist wesentliches Kriterium die räumliche Beziehung.<br />

Für die Anerkennung des Drittschutzes ausschlaggebend<br />

ist aus Sicht des Bundesverwaltungsgerichts im konkreten<br />

Fall, dass ein Kläger in der näheren Umgebung der<br />

stationären Verladestelle in Dannenberg zum notwendigen<br />

Umschlag der Transportbehälter von der Schiene auf<br />

die Straße und der andere Kläger in einer „nahezu zwangsläufig<br />

zu benutzenden Strecke“ wohnt; damit verenge sich<br />

die Vielzahl möglicher Transportwege „nach Art eines Flaschenhalses“.<br />

Mit anderen Worten ist bei Beförderungen<br />

im Hinblick auf den Drittschutz zwischen potenziellen Anliegern<br />

einer bescheidmäßig nicht festgelegten Beförderungsstrecke,<br />

bei denen das Transportgut „in einem mehr<br />

oder weniger flüchtigen Beförderungsvorgang vorbeigeführt<br />

wird“ und Anliegern an Transportstrecken zu unterscheiden,<br />

auf die der Transportvorgang angewiesen ist.<br />

Auch ist zu berücksichtigen, dass beim Umschlag in Dannenberg<br />

die Verweildauer nicht unerheblich ist.<br />

Damit ist der Drittschutz bei nuklearen Beförderungsvorgängen<br />

nur unter engen Voraussetzungen anerkannt.<br />

Im Regelfall werden derartige Zwangspunkte nicht bestehen,<br />

insbesondere wenn verschiedene Streckenführungen<br />

denkbar sind. Entscheidend ist danach der jeweilige<br />

Einzelfall.<br />

Da das Standortauswahlgesetz (vom 23. Juli 2<strong>01</strong>3 BGBl<br />

I S. 2553) durch Einführung des § 9a Abs. 2a AtG die Rückführung<br />

von Glaskokillen aus der Wiederaufarbeitung von<br />

abgebrannten Brennelementen zum Transportbehälterlager<br />

Gorleben ausschließt, wird die Entscheidung des OVG<br />

Lüneburg für diesen Standort nur noch für gegenwärtige<br />

nicht absehbare Transporte vom Transportbehälterlager<br />

Gorleben in ein Endlager Relevanz haben können. Ob damit<br />

das für eine Feststellungsklage erforderliche Feststellungsinteresse,<br />

in concreto Wiederholungsgefahr bejaht<br />

werden kann, steht auf einem anderen Blatt.<br />

Author<br />

Hanns Näser<br />

GNS Gesellschaft für Nuklear-Service mbH<br />

Frohnhauser Straße 67<br />

45127 Essen/Germany<br />

Spotlight on Nuclear Law<br />

Paradigm Shift in Transport Legislation or Rather at the “Bottleneck” ı Hanns Näser


<strong>atw</strong> Vol. 60 (<strong>2<strong>01</strong>5</strong>) | Issue 1 ı January<br />

Completeness Assessment of General<br />

Safety Requirements for Sodium-Cooled<br />

Fast Reactor Nuclear Design Utilizing<br />

Objective Provision Tree<br />

Namduk Suh, Moohoon Bae, Yongwon Choi, Bongsuk Kang and Huichang Yang<br />

1. Introduction The Korea Atomic Energy Research Institute (KAERI) is developing a Prototype Gen-IV Sodiumcooled<br />

Fast Reactor (PGSFR) of 150 MWe size with a plan to apply the construction permit by 2020. The Korea Institute<br />

of Nuclear Safety (KINS) is performing a regulatory research to prepare the licensing of this future reactor, developing<br />

regulatory requirements and safety analyses methodologies.<br />

The development of regulatory requirements<br />

is needed because in a<br />

prescriptive regulatory framework adopted<br />

by the countries like United<br />

States or Korea, licensing review of<br />

nuclear power plant is performed<br />

evaluating whether the design satisfies<br />

the prescriptive design criteria or<br />

regulatory requirements previously<br />

established. For this, U.S. Nuclear Regulatory<br />

Commission (NRC) has the<br />

well established General Design Criteria<br />

(GDC) [1] for Light Water Reactor<br />

(LWR) that served for many decades<br />

in assuring the safety of the nuclear<br />

power plant. The GDC is top level<br />

regulatory requirements enforced by<br />

law. The corresponding regulatory requirements<br />

for LWR are stipulated in<br />

the Korean “Regulations on Technical<br />

Standards for Nuclear Reactor Facilities”<br />

which has the same level of binding<br />

force and similar contents with<br />

those of GDC. Thus, preparing the licensing<br />

of PGSFR requires first of all a<br />

development of GDC like General<br />

Safety Requirements (GSR) for SFR.<br />

The approach we use in developing<br />

the GSR for SFR is 1) to evaluate the<br />

applicability of the current LWR GSR<br />

to SFR and 2) to reflect the other<br />

safety requirements for SFR, developed<br />

by Gen-IV International<br />

Forum (GIF) or American Nuclear Society<br />

(ANS). Following this approach<br />

we have developed a draft version of<br />

SFR GSR with 59 articles. The next<br />

step is to assess the draft versions for<br />

its completeness and the normal approach<br />

is to depend on the engineering<br />

judgement of experts. The NRC’s<br />

GDC is developed also based on the<br />

accumulated experiences of LWR licensing<br />

and operation, but unfortunately<br />

the similar experiences are not<br />

available for SFR. To assure that the<br />

developed GSR includes all the necessary<br />

requirements and guarantee the<br />

safety of SFR from Defence-in-Depth<br />

(DID) point of view, we have decided<br />

to utilize the Objective Provision Tree<br />

(OPT) methodology developed by International<br />

Atomic Energy Agency<br />

(IAEA) [2]. We found that this methodology<br />

provides a systematic and integral<br />

approach in complementing the<br />

GSR developed referencing the current<br />

requirements of similar kind.<br />

The OPT is a methodology to ensure<br />

and document the provision of<br />

essential “lines of protection” for successful<br />

prevention, control or mitigation<br />

of phenomena that could potentially<br />

damage the nuclear system.<br />

[2,3] The OPT is normally developed<br />

by designer to confirm whether the<br />

design fulfills the DID concept, but we<br />

have developed the OPT to apply it in<br />

assessing whether there is missing<br />

safety requirements in our GSR under<br />

development from DID concept. In the<br />

following section, we first describe the<br />

strategy of GSR development for SFR<br />

and the next section presents the development<br />

of OPT. Then, the completeness<br />

assessment on the requirements<br />

of nuclear design utilizing the<br />

“reactivity control” safety function is<br />

presented in the following section.<br />

Through out this paper, we will use a<br />

terminology GSR for common understanding,<br />

instead of GDC or Technical<br />

Standards which are used in the regulation<br />

of United States and Republic of<br />

Korea, respectively.<br />

2. Development of general<br />

safety requirements<br />

for SFR<br />

This section describes the position of<br />

general safety requirements in the<br />

framework of Korean atomic law system<br />

and then how we have developed<br />

the draft version of the SFR GSR. The<br />

current Korean legal framework for<br />

nuclear safety regulation has 4 levels.<br />

The nuclear safety act positions at the<br />

highest level and then follows, sequentially,<br />

enforcement decree of the<br />

nuclear safety act, enforcement regulation<br />

of the nuclear safety act, regulations<br />

on technical standards for nuclear<br />

reactor facilities. Basic concept<br />

and role of act and decrees are the<br />

following:<br />

1) Nuclear safety act stipulates the basic<br />

principles concerning nuclear<br />

safety<br />

2) Enforcement decree of the nuclear<br />

safety act stipulates the particulars<br />

entrusted by the act<br />

3) Enforcement regulation of the nuclear<br />

safety act stipulates the particulars<br />

entrusted by the Act and/or<br />

Decree and necessary for their enforcement<br />

(including detailed procedures<br />

and format of documents)<br />

4) Regulations on Technical Standards<br />

for Nuclear Reactor Facilities<br />

stipulate conceptual technical<br />

standards as entrusted by the Act<br />

and/or Decree. It contains also the<br />

details on technical standards, procedures<br />

or format as entrusted by<br />

the Act, Decree and/or Regulations<br />

Thus, the GSR which corresponds<br />

to LWR GDC of U.S. NRC is the regulations<br />

on Technical Standards in<br />

Korean atomic legal framework. This<br />

GSR for SFR is developed referencing<br />

the LWR GSR, so the first step is to<br />

evaluate the applicability of the LWR<br />

GSR to SFR. Performing the evaluation<br />

we could classify the requirements<br />

of LWR GSR into 3 groups, i.e.,<br />

1) LWR requirements which are not<br />

applicable to SFR, thus need to be excluded,<br />

2) requirements applicable to<br />

SFR as it is, 3) requirements needed to<br />

be revised/amended. In addition to<br />

this, taking into account the SFR specific<br />

features, there are requirements<br />

to be newly added. The overall<br />

strategy and process are depicted in<br />

Figure 1.<br />

In revising/amending the current<br />

LWR requirements and to identify<br />

ENERGY POLICY, ECONOMY AND LAW 27<br />

Energy Policy, Economy and Law<br />

Assessment of General Safety Requirements for SFR ı Namduk Suh, Moohoon Bae, Yongwon Choi, Bongsuk Kang and Huichang Yang


<strong>atw</strong> Vol. 60 (<strong>2<strong>01</strong>5</strong>) | Issue 1 ı January<br />

ENERGY POLICY, ECONOMY AND LAW 28<br />

| | Fig. 1.<br />

Strategy of GSR Development for SFR.<br />

Art. Title Art. Title Art. Title<br />

1 Definition 21 Use of qualified equipment 41 I&C system<br />

2 Radiation Protection 22 Human factors 42 Electric power system<br />

3 Defense-in-Depth 23 Prevention of harmful effects<br />

between systems<br />

4 Interfaces of safety with<br />

security and safeguards<br />

5 Physical Protection / Safeguards<br />

24 Protection against sodium<br />

reactions<br />

6 Proven technologies 26 Inherent protection of<br />

reactor<br />

| | Tab. 1.<br />

General Safety Requirements (Articles of Technical Standards) for SFR.<br />

43 Control room, etc.<br />

44 Alarm devices, etc.<br />

25 Reactor design 45 Optimization of radiation<br />

protection<br />

7 Assessment of Design Safety 27 Suppression of reactor power<br />

oscillation<br />

8 Construction and operating<br />

experiences<br />

46 Radioactive waste processing<br />

& storage systems<br />

47 Radiation protection<br />

provision<br />

28 Reactor core, etc. 48 Fuel handling & storage<br />

facilities<br />

9 Decommissioning 29 Fuel rod and assembly 49 Auxiliary systems<br />

10 Postulated initiating events 30 Protection against flow<br />

blockage<br />

50 Power conversion system<br />

11 Design bases accidents 31 Reactivity control system 51 Emergency response facilities<br />

and equipment<br />

12 Design extension conditions 32 Reactor protection system 52 Intermediate cooling system<br />

13 Safety classes and standards 33 Use of computerized system 53 Liquid sodium handling<br />

system<br />

14 External events design bases 34 Diverse protection system 54 Sodium heating system<br />

15 Fire protection 35 Reactor coolant boundary 55 Protection against sodium<br />

freezing<br />

16 Design bases for environmental<br />

effects<br />

36 Reactor cooling system 56 Purification control of cover<br />

gas and supply<br />

17 Reliability 37 Overpressure protection 57 Operating experiences and<br />

safety research<br />

18 Sharing of facilities 38 Residual heat removal<br />

system<br />

19 calibration / test / inspection/<br />

maintenance<br />

20 Startup, shutdown, and low<br />

power operation<br />

58 Limiting conditions for<br />

operation<br />

39 Ultimate heat sink 59 Initial tests<br />

40 Reactor containment, etc.<br />

new requirements to be added, we<br />

have referenced the international documents<br />

like IAEA SSR-2/1, Safety Design<br />

Criteria of GIF and draft version<br />

of SFR GDC under development by<br />

ANS. Fukushima action items and applicability<br />

of Risk Informed Regulation(RIR)<br />

are also considered. Utilizing<br />

this strategy and process, we have<br />

developed a draft version of SFR GSR<br />

containing 59 articles. The title of the<br />

articles are listed in Table 1.<br />

3. Development of OPT for<br />

SFR reactivity control<br />

safety function<br />

The OPT is a top-down method with a<br />

tree structure for each DID level describing<br />

objectives and barriers, safety<br />

function, challenges to maintain<br />

safety functions, mechanisms of safety<br />

function degradation, and provisions<br />

for each degradation or failure mechanisms<br />

to maintain safety functions.<br />

Reference [2] describes conceptually<br />

how to apply this methodology to development<br />

of safety requirements for<br />

innovative reactors, specifically for<br />

the modular high temperature gas<br />

cooled reactors. In general, we have<br />

three safety functions to fulfill the<br />

safety objectives, i.e., control of reactivity,<br />

core heat removal and containment<br />

integrity. Among these three<br />

safety functions, we have developed<br />

the OPT for the safety function of “reactivity<br />

control”. Because the design of<br />

PGSFR is not mature yet, we have developed<br />

the OPT modelling the KA-<br />

LIMER-600 [4] reactor which is conceptually<br />

designed by KAERI and is an<br />

SFR of 600 MWe size. OPT is a qualitative<br />

methodology whose development<br />

relies mainly on experiences of<br />

experts using the design documents<br />

like probabilistic safety assessment report.<br />

Because the SFR GSR we are developing<br />

is a general one which should<br />

not be reactor or design specific, we<br />

have developed the OPT for KALIMER<br />

even if the target reactor to apply the<br />

GSR in reviewing is the PGSFR. The<br />

detailed description of the system is<br />

not included in this paper since it is not<br />

necessary to understand the developed<br />

OPT. Example of the Level 3<br />

OPT we have developed for the safety<br />

function of “reactivity control” is<br />

shown in Figure 2.<br />

In Figure 2, safety function means<br />

the essential function necessary to ensure<br />

the safety objectives by maintaining<br />

DID and barrier integrity. Challenge<br />

is the phenomenon which<br />

threatens the successful achievement<br />

of the safety function and the possible<br />

challenges to the safety function<br />

Energy Policy, Economy and Law<br />

Assessment of General Safety Requirements for SFR ı Namduk Suh, Moohoon Bae, Yongwon Choi, Bongsuk Kang and Huichang Yang


<strong>atw</strong> Vol. 60 (<strong>2<strong>01</strong>5</strong>) | Issue 1 ı January<br />

| | Fig. 2.<br />

Developed Level 3 OPT for “reactivity control” safety function.<br />

are dealt with by the provisions (inherent<br />

characteristics, safety margins,<br />

systems, provisions). Mechanism is<br />

defined as “specific reason, process or<br />

situation whose consequence might<br />

create challenge to the performance<br />

of safety function.” [3]<br />

4. Completeness<br />

assessment of the<br />

developed general<br />

safety requirements<br />

The draft GSR developed, referencing<br />

the LWR GDC, SDC of GIF RSWG and<br />

ANS GDC for SFR is assessed from the<br />

DID point of view utilizing the OPT.<br />

The process is mainly to identify and<br />

check whether the mechanisms in the<br />

OPT are included in the draft GSR. In<br />

Figure 2, we have 4 challenges to the<br />

safety function of “reactivity control”<br />

and 6 mechanisms that could induce<br />

the challenges. For example fuel cladding<br />

chemical interaction (FCCI) is a<br />

mechanism that could induce the<br />

change in core geometry. Because the<br />

GSR is a top level requirement enforced<br />

by law, the contents are rather<br />

qualitative description, so the prevention<br />

of this mechanism and the ensuing<br />

challenge needs to be translated<br />

into requirements of GSR. On the<br />

other hand, how to achieve this mechanism<br />

should be handled in specific<br />

design by provisions, so the contents<br />

of provisions in Figure 2 need to be<br />

described in a lower level regulatory<br />

documents like review guides. The<br />

assessment whether the requirement<br />

to prevent this mechanism is included<br />

in the GSR or not is done as following:<br />

• Mechanism; Fuel-cladding chemical<br />

interaction.<br />

• Assessment; The paragraph (3) of<br />

Article 25 “reactor design” in our<br />

draft GSR stipulates that “the property<br />

change by the irradiation of<br />

the main core structure materials<br />

like control rod driving mechanism,<br />

core support structure etc.<br />

should not impair the structural<br />

integrity”. Thus the paragraph of<br />

Article 25 is the requirement to<br />

prevent mechanism of “fuel-cladding<br />

chemical interaction”.<br />

• Result; Requirement to prevent the<br />

FCCI is well implemented in the<br />

draft GSR.<br />

Another example we present is the<br />

mechanism of “control rod withdrawal<br />

from subcritical state” that<br />

challenges ‘the inability to maintain<br />

subcriticality”:<br />

• Mechanism; Control rod withdrawal<br />

from subcritical state.<br />

• Assessment; The subparagraph 5<br />

under the paragraph 2 of Article 32<br />

“reactor protection system” stipulates<br />

that “the protection system<br />

shall be designed to assure that the<br />

specified acceptable fuel design<br />

limits are not exceeded for any<br />

single malfunction of the reactivity<br />

control systems such as an accidental<br />

withdrawal of control rods.”<br />

Thus, the subparagraph of Article<br />

35 is the requirement to prevent<br />

the mechanism of “control rod<br />

withdrawal from subcritical state”.<br />

• Result; Requirement to prevent the<br />

control rod withdrawal from subcritical<br />

state is well implemented in<br />

the draft GSR.<br />

In this way, we have confirmed that<br />

the draft GSR has all the requirements<br />

to prevent the challenges and mechanisms<br />

for the “reactivity control”<br />

safety function. We found no requirements<br />

to be added or revised by assessing<br />

this “reactivity control” safety<br />

function, but we expect that we might<br />

be able to find some requirements to<br />

be revised or added by assessing this<br />

way and it might confirm the utility of<br />

our approach. We found that utilizing<br />

the OPT in this way is a systematic and<br />

integral way to complement the development<br />

of GSR. We will continue to<br />

work for other two safety functions in<br />

a future.<br />

5. Conclusion<br />

The draft version of GSR for SFR was<br />

developed, first by evaluating the applicability<br />

of the current LWR GSR to<br />

SFR and then taking into account<br />

other international requirements for<br />

SFR. The current requirements including<br />

the LWR GDC are coming<br />

from the long-year accumulated experiences<br />

of licensing and operation,<br />

but there are not enough experiences<br />

for SFR, so even if it is possible to develop<br />

a draft version of SFR GSR referencing<br />

the currently available requirements,<br />

there is need of a systematic<br />

and integral methodology to complement<br />

the developed GSR for SFR. The<br />

application of OPT is a good way to<br />

achieve the requirements. So the OPT<br />

have been developed for a safety function<br />

of reactivity control and applied<br />

in complementing the draft GSR. Assessing<br />

the completeness of the GSR<br />

in view of DID concept utilizing the<br />

OPT, it was found that the draft GSR<br />

includes all the requirements necessary<br />

to prevent the mechanisms which<br />

could challenge the safety function.<br />

The developed GSR will be applied in<br />

licensing review of PGSFR under<br />

ENERGY POLICY, ECONOMY AND LAW 29<br />

Energy Policy, Economy and Law<br />

Assessment of General Safety Requirements for SFR ı Namduk Suh, Moohoon Bae, Yongwon Choi, Bongsuk Kang and Huichang Yang


<strong>atw</strong> Vol. 60 (<strong>2<strong>01</strong>5</strong>) | Issue 1 ı January<br />

RESEARCH AND INNOVATION 30<br />

development in Korea which the designer<br />

plans to apply the licensing for<br />

construction permit by 2020. The revision<br />

and refinement of the draft GSR<br />

for SFR will continue further.<br />

REFERENCES<br />

| | [1] Code of Federal Regulation, Title 10,<br />

Part 50, Domestic Licensing of Production<br />

and Utilization of Facilities, Appendix<br />

A, General Design Criteria for<br />

Nuclear Power Plants, U.S. Nuclear Regulatory<br />

Commission, Washington D.C.<br />

| | [2] IAEA-TECDOC-1366, Considerations<br />

in the development of safety requirements<br />

for innovative reactors : Application<br />

to modular high temperature gas<br />

cooled reactors, IAEA, August 2003.<br />

| | [3] GIF/RSWG, An Integrated Safety Assessment<br />

Methodology (ISAM) for Generation<br />

IV Nuclear Systems, 2<strong>01</strong>1.<br />

| | [4] Korea Atomic Energy Research Institute,<br />

KALIMER-600 Conceptual Design<br />

Report, KAERI/TR-3381, 2007.<br />

Authors<br />

Namduk Suh, Moohoon Bae, and<br />

Yongwon Choi<br />

Korea Institute of Nuclear Safety<br />

62 Gwahak-ro, Yuseong-gu<br />

Daejon/Republic of Korea.<br />

Bongsuk Kang and Huichang Yang<br />

TÜV Rheinland Korea Ltd.<br />

Goro-dong 197-28, Guro-gu<br />

Seoul/Republic of Korea.<br />

RMB: The New Brazilian Multipurpose<br />

Research Reactor<br />

José Augusto Perrotta and Adalberto Jose Soares<br />

1. Introduction In 2009, pushed by the international Moly-99 supply crisis that occurred in 2008/2009, and<br />

that affected significantly the nuclear medicine services in the world, Brazilian government, decided to carry out a sustainability<br />

study, to decide about the feasibility to construct a new research reactor in the country. As demonstrated in<br />

reference [2], the result of the study, which was done following IAEA’s recommendation presented on reference [3],<br />

was favourable to the construction of the new reactor, and Brazilian professionals started analysing its conceptual<br />

design.<br />

| | Fig. 1.<br />

Top view of reactor core (left) and reflector vessel (right).<br />

In 2<strong>01</strong>0, following recommendations<br />

of COBEN (Bi-national Commission on<br />

Nuclear Energy), a committee responsible<br />

for a bi-national cooperative<br />

agreement between Brazil and Argentina,<br />

a decision was taken to adopt, for<br />

the new Research Reactors of Brazil<br />

(RMB) and Argentina (RA10), a conceptual<br />

model based on INVAP designed<br />

OPAL research reactor, as a reference<br />

for radioisotope production<br />

and neutron beams utilization.<br />

For the Brazilian RMB research reactor,<br />

in addition to radioisotope production<br />

and neutron beams utilization,<br />

two other requirements were established.<br />

The first one was the capability<br />

to test fuels and materials for the<br />

Brazilian nuclear program, and the<br />

second was the requirement to have,<br />

around the reactor building, the necessary<br />

infrastructure to allow the interim<br />

storage, for at least 100 years, of<br />

all spent nuclear fuel used in the reactor.<br />

Details of these two characteristics<br />

will be given in the next sections.<br />

Research and Innovation<br />

RMB: The New Brazilian Multipurpose Research Reactor ı José Augusto Perrotta and Adalberto Jose Soares<br />

2. Description of the<br />

reactor<br />

RMB is a MTR open pool type reactor<br />

that uses beryllium and heavy water<br />

as reflector, and light water as moderator<br />

and cooling fluid. The power of<br />

the reactor is 30 MW, and its main requirements,<br />

established during the<br />

feasibility study, are: radioisotope<br />

production, to attend national demand<br />

beyond 2020; production of<br />

thermal and cold neutron beams for<br />

research and application in all areas;<br />

development of materials and nuclear<br />

fuels for the Brazilian nuclear program;<br />

neutron activation analysis;<br />

and silicon transmutation doping.<br />

The core of the reactor is a 5 x 5<br />

matrix, containing 23 MTR fuel elements,<br />

and leaving 2 positions available<br />

for materials irradiation tests.<br />

Each fuel element has 21 plates, with a<br />

meat made of low enriched (19.75 %)<br />

Uranium Silicide-Aluminium dispersion<br />

(U 3 Si 2 -Al) clad with Aluminium.<br />

Dimensions of the fuel element are<br />

80.5 mm x 80.5 mm x 1,045 mm,<br />

and meat dimensions are 0.61 mm x<br />

65 mm x 615 mm.<br />

Three sides of the core are surrounded<br />

by a reflector vessel, filled with<br />

heavy water that acts as reflector for<br />

the neutrons produced in the core.<br />

The reflection on the fourth side is<br />

done with the utilization of removable<br />

beryllium blocks. These beryllium<br />

blocks are needed to allow RMB to be<br />

used as a tool for the Brazilian nuclear<br />

program. Figure 1 shows a top view of


<strong>atw</strong> Vol. 60 (<strong>2<strong>01</strong>5</strong>) | Issue 1 ı January<br />

the reactor core and the reflector<br />

vessel.<br />

The core is designed to have a<br />

cycle length of 28 days. To accomplish<br />

with this cycle, the fuel element is<br />

poisoned with Cadmium wires which<br />

are depleted together with the fuel<br />

element. Each fuel element has 42<br />

Cadmium wires, which are placed on<br />

the fuel element alongside the fuel<br />

plates, one on each side of the plate.<br />

The Cadmium wires are 0.4 mm in<br />

diameter and 615 mm long. The core<br />

has also 6 independent Hafnium control<br />

plates, which move parallel to the<br />

fuel plates.<br />

3. Reflector vessel<br />

The reflector vessel is made of zircaloy,<br />

and it is installed in the bottom<br />

of the reactor pool, about 10.5 meters<br />

below water surface level. Filled with<br />

heavy water, it has an internal diameter<br />

equal to 2.6 meters and an internal<br />

height equal to 1.0 meter. It has<br />

5 positions for neutron transmutation<br />

doping; 14 positions for pneumatic irradiation<br />

(9 with 3 vertical positions<br />

each and 5 with 2 vertical positions<br />

each); about 20 positions for bulk irradiation;<br />

one cold neutron source; 2<br />

cold neutron beams; 2 thermal beams,<br />

1 neutrongraphy beam and one position<br />

for fuel irradiation testing, where<br />

up to 2 rigs can be installed simultaneously.<br />

As explained before this fuel<br />

irradiation position constitutes one of<br />

the main differences between RMB<br />

and the reference reactor. The position<br />

has a 5 x 5 grid where beryllium<br />

blocks are placed to reflect the neutrons<br />

produced in the core when there<br />

is no fuel being tested. When used, the<br />

fuel irradiation position allows testing<br />

of fuel prototypes, simulating steady<br />

state and dynamic conditions (ramp<br />

tests and load following).<br />

At least 10 of the bulk irradiation<br />

positions in the reflector vessel can be<br />

used to irradiate rigs with low enriched<br />

fuel miniplates, to produce<br />

Mo-99. Each rig is designed to produce,<br />

after 7 days irradiation, between<br />

2,400 and ,3000 Ci of Mo-99, which<br />

will correspond to 400 and 500 Ci, respectively,<br />

after 6 days calibration.<br />

On the lower part of the reflector<br />

vessel there is a skirt, whose interior is<br />

divided into two parts. The central<br />

part is used as water inlet for the<br />

primary reactor cooling system, and<br />

the outer section, between the central<br />

part and the wall of the skirt, is used<br />

as water outlet for the reactor pool<br />

cooling system. Figure 2 shows a perspective<br />

and a cutaway view of the reflector<br />

vessel.<br />

| | Fig. 2.<br />

Perspective (left) and cutaway (right) views of the reflector vessel.<br />

4. Reactor and service<br />

pools<br />

The reactor pool is a 5.1 meters diameter,<br />

14 meters high cylindrical tank<br />

made of stainless steel, filled with water<br />

up to the 12.6 meters level. It<br />

houses the reflector vessel, a small<br />

spent fuel storage rack, with capacity<br />

to store up to 32 fuel elements; the<br />

bundles of tubes used for pneumatic<br />

irradiation; the internal piping that<br />

form the inlet and outlet of the<br />

primary and pool cooling systems;<br />

nuclear and process instrumentation;<br />

auxiliary support and mechanical<br />

structures, and the water inventory,<br />

required for the pool cooling system to<br />

perform its functions. The tank is embedded<br />

in a concrete block, anchored<br />

to the concrete by a set of reinforcement<br />

rings and clamps at the bottom.<br />

The bottom of the pool has 5 penetrations,<br />

one for the control plates driving<br />

mechanisms, and four for the<br />

heavy water system. One of the heavy<br />

water connections is used for drainage<br />

of the reflector vessel, two are used as<br />

inlet and outlet of the heavy water<br />

cooling system; and the forth connection<br />

is used as an alternative system to<br />

shut down the reactor. This connection<br />

has a set of valves that once open,<br />

removes about 50 % of the heavy water<br />

in less than 15 seconds, assuring<br />

that the reactor is kept shutdown,<br />

even after returning to normal temperature.<br />

Adjacent to the reactor pool there is<br />

the service pool, a 9.0 meters high rectangular<br />

stainless steel structure, with<br />

maximum water level equal to 7.6<br />

meters. The service pool houses a spent<br />

fuel storage rack with capacity to 600<br />

spent fuel elements, the equivalent to<br />

10 years of operation; some containers<br />

specially designed to store damaged<br />

fuel assemblies; a basket for solid waste<br />

storage; a transport cask platform; a<br />

structure to store the reactor isolation<br />

gate; internal piping of the pool cooling<br />

system; pool lighting supports; and<br />

racks used for decay of materials irradiated<br />

in the reactor and that needs<br />

further processing, like Silicon, the<br />

miniplates for Mo-99 production, etc.,<br />

The service pool also is the entrance of<br />

an elevator, which connects the service<br />

pool to a hot cell, named Moly Hot Cell,<br />

which is part of a system used to transfer<br />

the miniplates to a transport cask.<br />

The service pool is connected to the reactor<br />

pool by a transfer channel. The<br />

transfer channel, also made of stainless<br />

steel, has a 5.0 meters layer of water,<br />

which works as biological shielding<br />

when the spent fuel, or any material<br />

irradiated in the core, is transferred<br />

from the reactor pool to the service<br />

pool. A sliding gate, when installed in a<br />

| | Fig. 3.<br />

Perspective view of the reactor and service pools.<br />

groove of the transfer channel, allows<br />

maintenance of one pool without the<br />

need to empty the other pool. Figure 3<br />

shows a perspective view of the reactor<br />

and service pools.<br />

5. Reactor and pools cooling<br />

systems<br />

Light water is used for cooling the reactor<br />

core and the internals of the<br />

RESEARCH AND INNOVATION 31<br />

Research and Innovation<br />

RMB: The New Brazilian Multipurpose Research Reactor ı José Augusto Perrotta and Adalberto Jose Soares


<strong>atw</strong> Vol. 60 (<strong>2<strong>01</strong>5</strong>) | Issue 1 ı January<br />

RESEARCH AND INNOVATION 32<br />

reactor and service pools. The water<br />

used in the reactor primary cooling<br />

system enters the reactor pool through<br />

two pipes installed about one meter<br />

below the transfer channel, and flows<br />

down to enter in the lower part of the<br />

reflector vessel, then flows upward<br />

through the reactor core, and through<br />

a riser installed on top of the reflector<br />

vessel, leaving the reactor pool<br />

through a single pipe also installed below<br />

the transfer channel, as shown in<br />

Figure 3. The volume of water that<br />

flows through the core represents<br />

90 % or the total flow in primary cooling<br />

system. The other 10 % comes from<br />

the top of the reactor pool. It enters the<br />

top of the raiser and flows down to the<br />

outlet piping. By using this design, all<br />

N-16 produced in the water, when it<br />

passes through the reactor core, goes<br />

directly to the N-16 decay tank, installed<br />

below the service pool.<br />

The primary cooling system has 3<br />

circuits. Each circuit has a pump, with<br />

inertia flywheel, and a plate type heat<br />

exchanger with capacity to remove<br />

50 % of the heat generated in the reactor<br />

core. One of the circuits remains<br />

in standby during normal operation.<br />

In addition to the 10 % of water<br />

that flows in the primary cooling system,<br />

the reactor pool has another<br />

equivalent volume of coolant that<br />

flows downward in the reactor pool,<br />

passes through the radioisotope production<br />

and silicon irradiation rigs,<br />

and enters a plenum between the<br />

primary cooling inlet region and the<br />

external wall of the skirt installed on<br />

the lower part of the reflector vessel,<br />

as shown in Figure 2. The water<br />

leaves the plenum through a pipe<br />

that goes upward, leaving the reactor<br />

pool close to the transfer channel.<br />

The inlet and outlet pipes of<br />

both cooling systems, the primary<br />

cooling system and the pools cooling<br />

system, have siphon brake and<br />

| | Fig. 4.<br />

The temporary spent fuel storage and the handling and dismantling pools.<br />

flap valves on their top positions. The<br />

siphon brake valves are installed to<br />

prevent the accidental loss of water<br />

as a consequence of a siphon effect<br />

following the unlikely rupture of a<br />

pipe outside the pool, and the flap<br />

valves are installed to allow the establishment<br />

of the natural circulation<br />

process, to cool the reactor core, following<br />

the reactor shutdown.<br />

A 1.5 m thick hot layer on top or the<br />

reactor and service pools, provides a<br />

non-activated stable water layer over<br />

the pools. It prevents active particles<br />

from reaching the surface of the pools,<br />

reducing significantly the radiation<br />

dose to reactor operators. The hot<br />

layer temperature is 8 ºC higher than<br />

the pool water temperature.<br />

6. Reactor control and<br />

shutdown systems<br />

Six independent Hafnium control<br />

plates are used to control the fission<br />

process in the RMB research rector.<br />

Each control plate has an extension<br />

which has a magnetic disc at the end,<br />

and is driven by an independent<br />

mechanism installed in a sealed compartment<br />

below the reactor pool. The<br />

driving mechanism is based on a system<br />

known as “rack-pinion”, having<br />

on its extremity an electromagnetic<br />

assembly. When active, an electric<br />

current passes through the electromagnetic<br />

assembly and engages the<br />

magnetic disc, allowing the movement<br />

of the respective control plate.<br />

The movement is upwards for removal<br />

from the core, and downwards for insertion.<br />

Once the electric current is<br />

interrupted, the magnetic disc automatically<br />

disengages from the eelectromagnetic<br />

assembly, and the control<br />

plate falls by gravity. Compressed air,<br />

from a pneumatic cylinder, helps to<br />

accelerate the introduction of the control<br />

plate into the reactor core.<br />

The negative reactivity inserted by<br />

any combination of five control plates<br />

is enough to keep the reactor shutdown,<br />

and if for some reason, following<br />

a “scram signal” it is detected that<br />

two control plates have not reached to<br />

bottom position, a second “scram signal”<br />

is generated. This second “scram<br />

signal” is used to open a series of valves<br />

that result in the removal of about 50<br />

% of the heavy water from the reflector<br />

vessel; quantity enough to assure keeping<br />

the reactor shutdown even when it<br />

returns to ambient temperature.<br />

7. The spent fuel storage<br />

building<br />

To comply with the requirement to allow<br />

the interim storage, for at least<br />

100 years of all spent nuclear fuel<br />

used in the reactor; a building, named<br />

“Spent Fuel Storage Building”, was<br />

designed adjacent to the reactor<br />

building. This building, which can be<br />

accessed directly from the reactor<br />

building, will have two additional<br />

pools, one for temporary wet storage<br />

of the spent fuel used in the reactor,<br />

and the other for handling and dismantling<br />

rigs that were used for material<br />

and fuel irradiation tests.<br />

The temporary spent fuel storage<br />

pool is a stainless steel structure, similar<br />

to the service pool. The pool has<br />

only three items, the spent fuel storage<br />

rack, the inlet piping from the<br />

pool cooling system, and the pool<br />

lighting system. The spent fuel storage<br />

rack has a capacity to store 1,200<br />

spent fuel elements, the equivalent to<br />

20 years of reactor operation. In order<br />

to improve water distribution injection<br />

and water circulation through the<br />

fuel assemblies, the diffuser of the<br />

pool cooling system is placed below<br />

the storage rack. The pool cooling system<br />

has a derivation that is used to<br />

continuously purify the water, before<br />

it returns to the pool.<br />

The handling and dismantling pool<br />

is also a stainless steel structure. It<br />

houses several racks, with capacity to<br />

store 4 in-core irradiation rigs, 2 used<br />

cold neutron sources, 1 fuel irradiation<br />

loop, and 2 isolation gates, one for the<br />

temporary storage pool and the other<br />

to isolate the pools from a “delivery<br />

transfer channel”, that connects the<br />

two pools with the service pool, located<br />

in the reactor building. The pool<br />

has also the pool lighting system, the<br />

piping of the cooling and purification<br />

system, and a transport cask platform,<br />

needed to receive a cask that will be<br />

used to transfer the spent fuel to a dry<br />

storage position. Figure 4 shows the<br />

temporary spent fuel storage pool and<br />

the handling and dismantling pool.<br />

The two pools of the spent fuel<br />

storage building plus the reactor pool<br />

and the service pool, these last two<br />

located in the reactor building, form a<br />

stainless steel structure embedded in<br />

a concrete block, as shown in Figure<br />

5. Three hot cells located in the<br />

reactor building and one hot cell in<br />

the spent fuel storage building complement<br />

the concrete block.<br />

According to the conceptual design<br />

of the spent fuel storage building,<br />

after 20 year of decay, the spent<br />

nuclear fuel shall be transferred from<br />

the storage pool to a dry storage position,<br />

located in the level -6,00 of the<br />

building. For this operation, a dual<br />

purpose cask (for transport and stor-<br />

Research and Innovation<br />

RMB: The New Brazilian Multipurpose Research Reactor ı José Augusto Perrotta and Adalberto Jose Soares


<strong>atw</strong> Vol. 60 (<strong>2<strong>01</strong>5</strong>) | Issue 1 ı January<br />

age) is lowered in the transport cask<br />

platform, installed in the handling<br />

and dismantling pool. After being<br />

filled with spent fuel assemblies, the<br />

cask is taken to an area where it will be<br />

properly dried, and then transferred<br />

to level -6,00 of the building, where<br />

150 dual purpose casks can be stored<br />

for at least 100 years.<br />

A system comprising two ante cameras<br />

and two isolation gates, maintain<br />

the physical and environmental separation<br />

between the reactor and the<br />

spent fuel storage buildings.<br />

8. The research and production<br />

nucleus<br />

The reactor and spent fuel storage<br />

buildings are the centre of what is<br />

called the “research and production<br />

nucleus”, which includes a radioisotope<br />

production facility and three<br />

laboratories, one for research utilizing<br />

neutron beams, one for neutron activation<br />

analysis and the third one for<br />

post irradiation analysis of irradiated<br />

materials and nuclear fuels.<br />

The radioisotope production facility<br />

will have two lines of hot cells, the<br />

first one for production of radioisotopes,<br />

like Mo-99 and I-131, and the<br />

second one for “sealed sources”, like<br />

Ir-192 and I-125, for industrial and<br />

medical applications. According to the<br />

established requirement, it will have<br />

the capacity to produce radioisotopes<br />

and sealed sources to attend the national<br />

needs beyond 2020.<br />

The neutron beams laboratory will<br />

have lines of thermal neutrons, for experiments<br />

like high resolution diffractometry,<br />

high intensity diffractometry,<br />

Laue diffractometry, residual<br />

stress diffractometry, and neutrongraphy;<br />

and lines of cold neutrons,<br />

for experiments like small angle neutron<br />

scattering (SANS), reflectometry,<br />

prompt gamma analysis and others<br />

that are under analysis.<br />

The radiochemistry laboratory will<br />

have two pneumatic connections to receive<br />

long life irradiated samples, plus<br />

five pneumatic tubes connected directly<br />

to the reflector vessel, for cyclic<br />

irradiations of short life products and<br />

delayed neutron activation analysis.<br />

The post irradiation laboratory is<br />

the facility that, together with the reactor,<br />

allows irradiation tests of materials<br />

and fuels needed for the<br />

Brazilian nuclear program.<br />

Seven more facilities complement<br />

the research and production nucleus,<br />

the reactor auxiliary building, the<br />

cooling tower complex, the electrical<br />

supply and distribution building, a radioactive<br />

waste management facility,<br />

a workshop, an operator’s support<br />

building, and a researcher’s building.<br />

Figure 6 shows the main facilities of<br />

the research and production nucleus.<br />

9. The RMB nuclear<br />

research and production<br />

centre<br />

RMB is a new nuclear research and<br />

production centre that will be built in<br />

a city about 100 kilometres from Sao<br />

Paulo city, in the southern part of<br />

Brazil. The centre will have, in addition<br />

to the research and production<br />

nucleus, an administrative centre and<br />

an infrastructure centre to attend all<br />

the needs of the centre. The administrative<br />

centre will have a library, an administration<br />

building, a hotel, a restaurant,<br />

an ambulatory, and a training<br />

centre. The infrastructure centre will<br />

have a water treatment plant, a warehouse,<br />

a workshop, a facility for the fire<br />

brigade, a garage, a sewage treatment<br />

station, a chemical treatment plant, a<br />

meteorological station, the main gate,<br />

and the electrical substation. Shown in<br />

Figure 7, RMB Centre has an area of<br />

about 2 millions square meters.<br />

10. Status of the project<br />

In 2<strong>01</strong>1, the Ministry of Science Technology<br />

and Innovation allocated R$ 50<br />

Mill. (about US$ 25 Mill.) for the conceptual<br />

and basic designs of the complex.<br />

It allowed, in 2<strong>01</strong>2, the signature<br />

of a contract, with a Brazilian company,<br />

to develop the engineering work for the<br />

conceptual and basic design phases of<br />

all buildings and facilities of the centre,<br />

excluding the reactor and connected<br />

systems; and in 2<strong>01</strong>3 the signature of<br />

the contract with INVAP for the work<br />

related to the preliminary engineering<br />

of the reactor and connected systems.<br />

Conclusion of both contracts is planned<br />

for the middle of 2<strong>01</strong>4.<br />

Also in 2<strong>01</strong>2, a contract was signed,<br />

with a Brazilian company with tradition<br />

in environmental studies, to perform<br />

environmental and site studies.<br />

| | Fig. 5.<br />

Pools embedded in the concrete block.<br />

| | Fig. 6.<br />

Plant (left) and perspective view (right) of the RMB research and production nucleus.<br />

The report was finished by middle<br />

2<strong>01</strong>3, allowing the starting of environmental<br />

and nuclear licensing processes,<br />

with presentation of site and local reports,<br />

requirements for first license.<br />

They were also the basis for the three<br />

public hearings, done in October 2<strong>01</strong>3.<br />

Site topography was already surveyed;<br />

geological sampling completed,<br />

and a meteorological tower was<br />

installed and it is operational since<br />

2<strong>01</strong>2.<br />

Next steps are: conclusion of the basic<br />

and preliminary engineering, development<br />

of detailed design, manu-<br />

| | Fig 7.<br />

Artist view of the RMB nuclear research centre.<br />

RESEARCH AND INNOVATION 33<br />

Research and Innovation<br />

RMB: The New Brazilian Multipurpose Research Reactor ı José Augusto Perrotta and Adalberto Jose Soares


<strong>atw</strong> Vol. 60 (<strong>2<strong>01</strong>5</strong>) | Issue 1 ı January<br />

34<br />

AMNT 2<strong>01</strong>4<br />

Paper<br />

presented<br />

at the RRFM 2<strong>01</strong>4<br />

facturing, construction, assembling<br />

and management. These phases will be<br />

carried out by national and international<br />

companies, and for these activities,<br />

a provision was made in the national<br />

budget, but not yet confirmed.<br />

Total project remaining time span is<br />

estimated in 5 years after contract signature<br />

and subject to availability of<br />

funds.<br />

11. References<br />

| | [1] I. J. A. Perrotta, J. Obadia, “The RMB<br />

project development status”, on Proceedings<br />

of the 2<strong>01</strong>1 International Conference<br />

on Research Reactors: Safe Management<br />

and Effective Utilization, held in<br />

Rabat, Morocco, 14-18 November 2<strong>01</strong>1;<br />

International Atomic Energy Agency, Vienna,<br />

Austria (2<strong>01</strong>2), available at: http://<br />

www-pub.iaea.org/MTCD/Publications/<br />

PDF/P1575_CD_web/datasets/abstracts/<br />

C6Perrotta.html.<br />

| | [2] I. J. Obadia, J. A. Perrotta, “A sustainability<br />

analysis of the Brazilian Multipurpose<br />

Reactor Project”, on Transaction of<br />

14 th International Topical Meeting on Research<br />

Reactor Fuel Management<br />

(RRFM-2<strong>01</strong>0), held in Marrakesh, Morocco,<br />

21-25 March 2<strong>01</strong>0; European<br />

Nuclear Society, Brussels, Belgium<br />

(2<strong>01</strong>0), ISBN 978-92-95064-10-2, available<br />

at: http://www.euronuclear.org/<br />

meetings/rrfm2<strong>01</strong>0/transactions/<br />

RRFM2<strong>01</strong>0-transactions-s6.pdf.<br />

| | [3] International Atomic Energy Agency,<br />

“Specific Considerations and Milestones<br />

for a Research Reactor Project”, Nuclear<br />

Energy Series NP-T-5.1, IAEA, Vienna,<br />

(2<strong>01</strong>2), ISBN: 978–92–0–127610–0, Available<br />

at: - http://www-pub.iaea.org/MTCD/<br />

publications/PDF/Pub1549_web.pdf.<br />

Authors<br />

José Augusto Perrotta and<br />

Adalberto Jose Soares<br />

Comissão Nacional de Energia<br />

Nuclear (CNEN)<br />

Avenida Prof. Lineu Prestes 2242<br />

05508-000, Brazil<br />

45 th Annual Meeting on Nuclear Technology: Key Topic |<br />

Reactor Operation, Safety – Report Part 3<br />

The following reports summarise the presentations of the Technical Sessions “Reactor Operation, Safety: Radiation<br />

Protection”, “Competence, Innovation, Regulation: Fusion Technology” and “Competence, Innovation, Regulation:<br />

Education, Expert Knowledge, Knowledge Transfer” presented at the 45 th AMNT 2<strong>01</strong>4, Frankfurt, 6 to 8 May<br />

2<strong>01</strong>4.<br />

The other Key Topics and Technical Sessions have been covered in previous issues of <strong>atw</strong> and will be covered in further<br />

issues of <strong>atw</strong>.<br />

Reactor Operation, Safety:<br />

Radiation Protection<br />

Angelika Bohnstedt<br />

Due to different circumstances the amount of presentations in the<br />

technical session “Radiation Protection” was at the Annual<br />

Meeting actually reduced to three lectures. But this gave the audience<br />

with about 23 to 27 participants the opportunity to have a<br />

lively discussion after each presentation, not only with the lecturer<br />

but also with other colleagues in the public. So the whole<br />

session was a fruitful exchange of interesting information and<br />

knowledge.<br />

The session was chaired by Dr. Angelika Bohnstedt, Karlsruhe<br />

Institute of Technology (KIT).<br />

The first presentation “Optimisation of Clearance Measurements<br />

According to DIN 25457 Taking Account of Type A and<br />

Type B Uncertainties” was hold by S. Thierfeld (co-author:<br />

S. Wörlen; both Brenk Systemplanung GmbH). In the beginning<br />

S. Thierfeld gave an overview of the DIN 25457, the widely applied<br />

standard for clearance measurements. He showed the evolvement<br />

from the fundamentals in 1993 via the Part 4 about contaminated<br />

and activated metal scrap, to the Part 6 of building rubbles and the<br />

latest Part 7 of the DIN about nuclear sites. And he emphasized<br />

that the primary aim is to get a reliable yes/no decision about the<br />

compliance with clearance levels. At the next step S. Thierfeld explained<br />

the incorporation of DIN ISO 11929, the standard for<br />

dealing with uncertainties in measurements, into DIN 25457. The<br />

consideration of Type A and Type B uncertainties for measurements<br />

and their calibrations was discussed. For different factors,<br />

influencing measurement and calibration, a conservative approach,<br />

taking only Type A uncertainties into account, and a realistic<br />

approach, combining Type A and Type B uncertainties, is possible.<br />

S. Thierfeld elucidated how to check step by step in the measurement<br />

and the calibration procedure which approach of uncertainty<br />

determination will be more reasonable for each respective<br />

factor. He concluded that finally a combination of all conservative<br />

and realistic approaches has to be done in a way to reach clearance<br />

measurements as precisely as necessary. At the end S. Thierfeld<br />

pointed out that the higher effort to reduce uncertainties will<br />

bring a decreased effort for decontamination work.<br />

The following presentation “Optimization of Handling Components<br />

and Large Scale Shielding Calculations with the Deterministic<br />

Code ATTILA” was given by S. Boehlke (co-author:<br />

M. Mielisch; both STEAG Energy Services GmbH), who started with<br />

the statement that in general shielding components are designed<br />

with conservative assumptions and boundary conditions which<br />

cover all possibly occurring situations. This can result in an overestimated<br />

shielding and the goal of an optimization procedure is to<br />

decrease on one hand the radiation level in accessible areas but on<br />

the other hand to decrease the amount of avoidable shielding material.<br />

S. Boehlke noted that for this optimization the calculation of<br />

the shielding geometry as well as the calculation of the dose rate<br />

distribution was done with the code ATTILA. He explained the different<br />

features of ATTILA, e.g. intuitive graphical user interface<br />

and the possibility to integrate simplified CAD geometries etc., and<br />

demonstrated in the following the use of ATTILA with 2 examples:<br />

a large scale dose rate mapping and the optimization of the shielding<br />

material of a handling machine for canisters of vitrified glass.<br />

For the large scale model (situation in a storage building) several<br />

aspects like superposition of all sources, the scattering of walls<br />

etc. and the scattering through openings was taken into account.<br />

As result S. Boehlke showed an overview about the shielding situation<br />

in the whole building. The second example was the calculation<br />

of the dose rate at the surface of a handling machine for canisters.<br />

Here S. Boehlke could demonstrate as consequence of the<br />

calculations a change in the design of the machine with the success<br />

that regions where the dose rate limit was exceeded before<br />

vanished and on the material site the reduction of used lead was<br />

about 30 % and the overall mass reduction of the machine was of<br />

about 10 %.<br />

AMNT 2<strong>01</strong>4<br />

Key Topic | Reactor Operation, Safety – Report Part 3


<strong>atw</strong> Vol. 60 (<strong>2<strong>01</strong>5</strong>) | Issue 1 ı January<br />

In the third lecture “Shielding Factors of Newly Designed<br />

Ventilation Screws” H. Niegoth (co-authors: S. Boehlke, W. Stratmann<br />

and M. Bock; all STEAG Energy Services GmbH) presented the<br />

novel design of a shielding screw. He started with a short explanation<br />

that for a hot cell – to handle spent fuel and other sources of<br />

high radiation- there are two opposing requirements: on one hand<br />

sufficient ventilation is necessary but an effective radiation shielding<br />

has to be guaranteed on the other hand. Known construction<br />

solutions are Z-shaped channels, not able to penetrate a wall<br />

straight, and ventilation screws made of cast iron where the shielding<br />

is restricted to gammy radiation. Next H. Niegoth demonstrated<br />

a new approach for a screw design. This design bases upon a sandwich<br />

construction of several layers of winged discs where each individual<br />

element can vary in the numbers of wings, in the thickness<br />

and in the type of shielding material. H. Niegoth pointed out<br />

that because of different materials the shielding possibility is not<br />

restricted to gamma radiation but also neutron shielding can be<br />

achieved by using disc elements of polyethylene. He presented<br />

shielding calculations, performed with the ATTILA code, for<br />

screws with variations in the diameter, the length and the number<br />

of wings for each disc and in the number of turns per screw. In addition<br />

pressure loss coefficients have to be calculated for different<br />

screw parameters with CFD methods. At the end H. Niegoth summarized<br />

that the sandwich concept of the novel screw allows a<br />

flexible adaption of the shielding requirements with regard to the<br />

ventilation requirements for individual application cases.<br />

Competence, Innovation, Regulation:<br />

Fusion Technology<br />

Optimisation Steps in the ITER Design<br />

Thomas Mull<br />

ITER is the International Thermonuclear Experimental Reactor<br />

which is presently under construction at Cadarache in Southern<br />

France. This reactor is meant to demonstrate the feasibility of<br />

maintaining a burning fusion plasma – magnetically confined and<br />

producing a fusion power of 500 MW – in a steady state for several<br />

minutes and to investigate the possibility of breeding Tritium,<br />

which is needed for fuel, at a technical/industrial scale.<br />

The first presentation with the title “Effect of Diagnostic<br />

Apertures on Shut-Down Dose in ITER Upper Port Plug #18”<br />

was given by Arkady Serikov (Karlsruhe Institute of Technology,<br />

KIT). His co-authors were U. Fischer, B. Weinhorst (both KIT) and<br />

L. Bertalot, A. Suarez and S. Pak (all three: ITER Organisation).<br />

Shut-Down Dose Rates (SDDR) are a key condition for ITER<br />

maintainability. Dr. Serikov and his colleagues had focused on one<br />

of the port plugs, namely the Diagnostics Upper Port Plug (UPP) #<br />

18. This port plug is hosting three diagnostic systems: vacuum ultra-violet<br />

(VUV) spectrometer, vertical neutron camera (VNC)<br />

and neutron activation system (NAS).<br />

The SDDRs are calculated in a multi-step process. The first step<br />

calculates the neutron and gamma flux in the plug volume during<br />

ITER operation, based on a prediction of the strength and spatial<br />

distribution of the power release of the ITER fusion plasma and<br />

shielding effects. The second step calculates the (space-resolved)<br />

activation of the materials in the plug, based on these radiation<br />

fluxes and assumptions for the preceding ITER operation time. A<br />

last step calculates the gamma dose rates due to these activated<br />

materials, based on a certain shutdown time before access (typically<br />

106 s, i.e.: approx. 12 days).<br />

The parameters to be varied are choices for materials, presence<br />

or absence of filler materials and general geometry (where<br />

the real geometry is rather closely defined but for sake of simplicity<br />

there are calculations with a “homogenized” plug).<br />

Dr. Serikov and his colleagues found out that the SDDR directly<br />

behind the UPP under consideration could be reduced with respect<br />

to the current design by a factor of approx. 2 by proper<br />

choice of geometry and materials. Moreover they collected experience<br />

with radiation streaming effects inside the gaps which are<br />

surrounding the plugs inevitably and due to the apertures required<br />

by the spectrometers. This experience can be transferred to<br />

many other components.<br />

The following three contributions were all dealing with properties<br />

of tungsten which is foreseen as the plasma-facing material<br />

for the ITER divertor. The speakers (and main authors) of all these<br />

contributions were from Forschungszentrum Jülich GmbH (FZJ).<br />

Isabel Steudel presented her works on “Thermal Shock Behaviour<br />

of Tungsten Under Different Simulation Methods”. Her<br />

co-authors were A. Huber, J. Linke, G. Sergienko and M. Wirtz.<br />

Forged tungsten has a heterogeneous grain structure with grains<br />

flattened corresponding to the forging forces. I. Steudel had investigated<br />

the resistance of tungsten samples with different surface grain<br />

orientation to the impact of electron beams and Nd:YAG laser beams<br />

(with these beams simulating peak power impacts due to so-called<br />

edge-localized modes of the plasma, ELMs, which reach up to 1 GW/<br />

m 2 and which are way higher than the “normal” irradiation due to a<br />

burning plasma which reaches “only” up to 20 MW/m 2 ). The experiments<br />

were starting from base temperatures of 20 °C and 400 °C,<br />

respectively. Mrs. Steudel explained that ELMs are unlikely to occur<br />

in operation states where the wall temperatures are below 200 °C.<br />

The results of these experiments show that there are different<br />

kinds of surface modifications and damages which are referable to<br />

two mechanisms. The transient heat loads and the related temperature<br />

increase leads to a local expansion that induces compressive<br />

stresses due to the cooler surrounding material. After the thermal<br />

shock event the material quickly cools down and compressive<br />

stresses are converted into tensile stresses. If the material is<br />

ductile these stresses can be compensated by plastic deformation.<br />

Otherwise cracks or crack networks occur.<br />

The damage behaviour strongly depends on the impacting<br />

power density and on the base temperature. A damage threshold<br />

was identified between 0.19 and 0.38 GW/m 2 for both base temperatures,<br />

for recrystallised material even between 0.38 and 0.76<br />

GW/m 2 if starting at room temperature.<br />

An important conclusion from the experiments is that both<br />

simulation methods are capable to provide similar thermal loading<br />

conditions and that the damage patterns such as roughening<br />

and cracking are similar and show only minor deviations.<br />

Nathan Lemahieu reported on “Resistance of Tungsten with<br />

Yttrium Doping to ELM-Like Thermal Shocks”. His co-authors<br />

were J. Linke, G. Pintsuk, M. Wirtz (all three FZJ) as well as G. Van<br />

Oost (Ghent University, Belgium) and Z. Zhou (University of Science<br />

and Technology Beijing, China).<br />

The thermal shock resistance of spark plasma sintered tungsten<br />

grades, containing between 0.25 weight% and 1 weight% yttrium,<br />

was investigated under fusion relevant ELM-like loading conditions.<br />

The tungsten samples were cyclically tested at room temperature<br />

using a Nd:YAG laser beam and the electron beam facility<br />

JUDITH 1. Heat pulses with durations of 1 ms were applied to the<br />

samples leading to absorbed power densities between 0.37 GW/m 2<br />

and 1.14 GW/m 2 . Furthermore, at a temperature of 400 °C, three<br />

samples were tested as well with the highest available power density<br />

of 1.14 GW/m 2 . The characterization of the samples before and<br />

after exposure shows that the thermal shock resistance improves<br />

with increasing yttrium content. However, in contrast to pure<br />

tungsten, for a base temperature of 400 °C there is still brittle behaviour<br />

for the yttrium-doped tungsten.<br />

These works clearly showed that tungsten-yttrium grades have<br />

benefits and should be considered as plasma facing materials<br />

(PFM). However, an observed rise in the ductile to brittle transition<br />

temperature (DBTT) could be a real draw-back. Therefore,<br />

future studies should include more tests at elevated base temperatures,<br />

higher than 400 °C to determine this DBTT and to exclude<br />

other drawbacks. A second approach to future research could include<br />

optimizing the yttrium content.<br />

35<br />

AMNT 2<strong>01</strong>4<br />

AMNT 2<strong>01</strong>4<br />

Key Topic | Reactor Operation, Safety – Report Part 3


<strong>atw</strong> Vol. 60 (<strong>2<strong>01</strong>5</strong>) | Issue 1 ı January<br />

36<br />

AMNT 2<strong>01</strong>4<br />

Bruno Jasper explained “The Powder Metallurgical Route to<br />

Tungsten-Fiber Reinforced Tungsten”. His co-authors were J.W.<br />

Coenen, Ch. Linsmeier (both FZJ) and J. Riesch and J.-H. You<br />

(Max-Planck-Institut für Plasmaphysik, Garching, Germany) as<br />

well as A. Mohr (Ruhr Universität Bochum, Germany).<br />

Tungsten structures can withstand high temperatures but<br />

tungsten is a relatively brittle material. Tungsten-fiber reinforced<br />

tungsten (Wf/W) composites are supposed to enable enhanced<br />

toughness due to extrinsic energy dissipation mechanisms such as<br />

interface debonding and plastic deformation of fibers. So far<br />

Wf/W has been produced by Chemical Vapor Infiltration (CVI).<br />

The crucial property of this material is a certain ability of the<br />

fibers to move microscopically with respect to the surrounding<br />

tungsten bulk. This feature is secured by very thin coatings of the<br />

tungsten fibers, e.g. by erbium oxide. CVI does not damage neither<br />

the fibers nor their coating. Unfortunately, CVI is limited to rather<br />

small production rates.<br />

B. Jasper and his colleagues are investigating alternative<br />

methods, namely powder metallurgical routes of Wf/W production:<br />

Hot Isostatic Pressing (HIP) and Electro Discharge Sintering<br />

(EDS). The advantage of such a procedure could be much larger<br />

production rates. It is, however, a big challenge not do damage<br />

the fibers and their coatings during these new production processes<br />

which impose high thermal and mechanical stresses onto<br />

the fibers.<br />

In this context, EDS might be the preferable process. During<br />

EDS a powder is placed between two electrodes and then compacted<br />

by a short but high energy pulse. In addition an axial pressure<br />

is applied to increase the density even further.<br />

First pure W samples showed high values for the relative density.<br />

Investigations on samples including fibers are ongoing, supported<br />

by comprehensive modelling efforts.<br />

The Technical Session was chaired by Thomas Mull (AREVA<br />

GmbH).<br />

Competence, Innovation, Regulation:<br />

Education, Expert Knowledge, Knowledge<br />

Transfer<br />

Jörg Starflinger<br />

Design and Development of Training for Managers of a Nuclear<br />

Operator (Anna Starynska, Spider Management Technologies<br />

Ukraine; Ronald Landefeld, Christian Schönfelder and Robert Geisser,<br />

AREVA GmbH): AREVA with their subcontractor Spider Management<br />

Technologies Ukraine are currently implementing a consultancy<br />

project with the objective to complete a management<br />

training center of a nuclear operator. As an important milestone,<br />

the development as well as the training needs analysis of managers<br />

has been completed recently, and accepted by executive<br />

management of the operator. In the paper the methodology used<br />

has been described, the connection of development needs with<br />

the strategic reorientation of the operator and the contribution of<br />

management training to achieving the strategic goals of the utility,<br />

in particular improvement of nuclear safety. The highest priority<br />

of all activities of a nuclear operator shall be given to establish a<br />

mechanism of permanent improvement of safety culture according<br />

to IAEA-Safety Series No. 75-INSAG-4.<br />

Based on a management competence model, a special tool –<br />

the Individual Training and Development Plan – was elaborated<br />

for managers’ appraisal, identification of training needs, elaboration<br />

of individual plans for development of managers and trainers,<br />

and monitoring of the personal development process.<br />

In summary, the utilization of the competence model allows<br />

establishing, forming and developing preferable behaviour of<br />

managers in the context of creation of necessary operation culture.<br />

Individual training and development plans for managers are<br />

an efficient and effective tool of implementation of the operator’s<br />

middle and long term strategy.<br />

Support of an University Nuclear Master Course by a Nuclear<br />

Supplier (Tomas Bajer, AREVA NP Controls, s.r.o.; Vladimir<br />

Slugen, Slovak University of Technology; Stefan Glaubrecht and<br />

Christian Schönfelder, AREVA GmbH): The cooperation between<br />

the Institute of Nuclear and Physical Engineering FEI STU, University<br />

of Bratislava, Slovak Republic, and AREVA has been presented. This<br />

cooperation is considered as a win-win arrangement for all stakeholders,<br />

the university, students and AREVA. The university can<br />

rely on state-of-the-art technologies for its education activities,<br />

expand its lecture offer and establish an international scope. Students<br />

will gain a deeper comprehension of current issues in nuclear<br />

Instrumentation&Control and they will be better prepared for<br />

their future job positions and career perspectives. AREVA will profit<br />

from the students’ enhanced specific knowledge on nuclear technology<br />

and access to well-educated and motivated graduates.<br />

As an example the preparation and delivery of specialized lectures<br />

and practical exercises for an upcoming new subject “Measurement<br />

and control in nuclear power plants”, focusing on stateof-the-art<br />

technologies, especially TELEPERM ® XS (TXS), which<br />

is also used in Slovak NPPs of VVER-440 type. AREVA contributed<br />

to four of the twelve lectures of the university course.<br />

This cooperation will be formalized in the near future by concluding<br />

an agreement detailing the scope of the cooperation. The<br />

cooperation could also be extended in the future, e.g. by expanding<br />

the number of lectures and lab works that are supported by<br />

AREVA, by organizing student internship and Master theses in<br />

AREVA facilities, or even by performing joint R&D projects.<br />

Practical Implementation Methodologies of Preserving<br />

Competence in Nuclear Power Plants (Michael Burkhard, GiS -<br />

Gesellschaft für integrierte Systemplanung mbH): To preserve competence<br />

and knowledge in nuclear power plants, professional tools<br />

are in use in the area of maintenance and operations, so-called “Enterprise<br />

Asset and Operations Management Solution (EAM)”. Such<br />

a system contains operational data, maintenance instructions,<br />

technical specifications, historical data, etc. It can be extended to a<br />

Knowledge Preservation System (KPS), which contributes to prevent<br />

the loss of knowledge, that processes can be optimized by utilizing<br />

experience and to extend of the power plant’s life cycle. If the<br />

KPS is established in a very early stage, information is inserted in a<br />

less filtered way. That way it is possible not only to learn from best<br />

practices but also to prevent doing the same mistakes twice. As soon<br />

as this is achieved, learning from best practices as well as learning<br />

from mistakes, it is very likely that the power plant is optimally prepared<br />

for a technically and economically optimized future.<br />

The main target and the focus has to be on gathering data in a<br />

sufficient way whilst enabling users to get those information attached<br />

directly to their actual work so they get the information<br />

they need at the right time, in the right context and in the appropriate<br />

details. Such system has been applied successfully in several<br />

nuclear power plants in Germany and Switzerland.<br />

Authors:<br />

Angelika Bohnstedt<br />

Karlsruher Institut für Technologie (KIT)<br />

Programm Nukleare Sicherheitsforschung (NUKLEAR)<br />

KIT Campus Nord, Gebäude 433<br />

Hermann-von-Helmholtz-Platz 1<br />

76344 Eggenstein-Leopoldshafen/Germany<br />

Thomas Mull<br />

AREVA GmbH<br />

Nuclear Fusion, HTR and Transverse Issues (PTDH-G)<br />

Paul-Gossen-Straße 100<br />

91052 Erlangen/Germany<br />

Prof. Dr.-Ing. Jörg Starflinger<br />

Institutsleiter<br />

Universität Stuttgart<br />

Institut für Kernenergetik und Energiesysteme (IKE)<br />

Pfaffenwaldring 31, 70569 Stuttgart/Germany<br />

AMNT 2<strong>01</strong>4<br />

Key Topic | Reactor Operation, Safety – Report Part 3


The International Expert Conference on Nuclear Technology<br />

Estrel Convention<br />

Center Berlin<br />

5–7 May<br />

<strong>2<strong>01</strong>5</strong><br />

Germany<br />

Key Topics<br />

Outstanding Know-How &<br />

Sustainable Innovations<br />

Enhanced Safety &<br />

Operation Excellence<br />

Decommissioning Experience &<br />

Waste Management Solutions<br />

Programme<br />

3 Gold Sponsor<br />

3 Silver Sponsors<br />

www.nucleartech-meeting.com<br />

Fuel


<strong>atw</strong> Vol. 60 (<strong>2<strong>01</strong>5</strong>) | Issue 1 ı January<br />

AMNT <strong>2<strong>01</strong>5</strong> 38<br />

Plenary Session<br />

Tuesday ı May 5 th <strong>2<strong>01</strong>5</strong><br />

Welcome and Opening<br />

Address<br />

Dr. Ralf Güldner, President of DAtF,<br />

Germany<br />

Policy<br />

German Energiewende and European Energy<br />

Market – Risk or Opportunity?<br />

Thorsten Herdan, Head of the Department<br />

Energy Policy, Federal Ministry for Economic<br />

Affairs and Energy, Germany<br />

International Developments<br />

Representative of EU Member State<br />

Economy<br />

E.ON’s Strategy: Managing Regulation and<br />

Political Uncertainty<br />

Dr.-Ing. Leonhard Birnbaum, Member of the<br />

Board of Management – Markets,<br />

Services, E.ON SE, Germany<br />

Vattenfall’s Visions Concerning Climate<br />

Policy and the Place of Nuclear<br />

Mats Ladeborn, Head of Nuclear Power<br />

Development, Vattenfall AB, Sweden<br />

Long-Term Stability and Profitability in<br />

Electricity Generation<br />

Jacek Cichosz, Vicepresident and Member of<br />

the Board, PGE EJ1, Poland<br />

Communications<br />

Pragmatism and Ideology: Opinion Shaping<br />

in Nuclear<br />

Ann S. Bisconti, PhD, President, Bisconti<br />

Research, Inc., USA<br />

Why Miracles Come From Nuclear?<br />

Nuclear Communications Beyond Energy<br />

Dr. John Barrett, President and Chief<br />

Executive Officer, Canadian Nuclear<br />

Association, Canada<br />

Waste Management<br />

Re-Start of the Selection Process for a HAW<br />

Final Repository in Germany – a Snapshot of<br />

the Status-Quo<br />

Key Note: Ursula Heinen-Esser, Chairperson<br />

of the Commission “Storage of High-Level<br />

Radioactive Waste Materials”, German<br />

Bundestag<br />

Panel<br />

• Ursula Heinen-Esser, Chairperson of the<br />

Commission<br />

• Prof. Dr. Dirk Bosbach, Director of the Institute<br />

of Energy and Climate Research<br />

IEK-6: Nuclear Waste Management and<br />

Reactor Safety, Forschungszentrum Jülich<br />

GmbH<br />

• Jochen Stay, Spokesperson of anti-nuclear<br />

organisation .ausgestrahlt<br />

• Dr. Hannes Wimmer, Chairman of the<br />

Board of Managing Directors, GNS Gesellschaft<br />

für Nuklear-Service mbH, Germany<br />

Moderator: (Tba)<br />

Competence<br />

From Enhanced Safety to Advanced Designs<br />

Panel<br />

• Yves Brachet, PhD, President EMEA Region,<br />

Westinghouse Electric Company,<br />

Belgium<br />

• Nick Hanigan, Director of Waste Management<br />

and Decommissioning National<br />

Nuclear Laboratory, UK<br />

• Stefan vom Scheidt, CEO AREVA GmbH,<br />

Germany<br />

• Tba, China National Nuclear Corporation<br />

(CNNC), China<br />

Moderator: Chairperson KTG (tba), Germany<br />

Outlook AMNT 2<strong>01</strong>6<br />

Chairperson KTG (tba)<br />

Social Evening<br />

All contributions translated simultaneously<br />

in English/German.<br />

The DAtF-President and the KTG-Chairperson<br />

will lead through the programme.<br />

Key Topic<br />

Outstanding Know-How<br />

& Sustainable<br />

Innovations<br />

Focus Session<br />

Implementing New Safety<br />

Requirements in Europe<br />

Wednesday ı May 6 th <strong>2<strong>01</strong>5</strong><br />

Coordinators: Dr. Christian Raetzke, CONLAR<br />

Consulting on Nuclear Law, Licensing and<br />

Regulation, Germany<br />

The revision of the EU Nuclear Safety Directive<br />

has been adopted by the Council. WENRA<br />

will complete the revision of its Reference<br />

Levels by 2<strong>01</strong>4. The IAEA is pursuing a number<br />

of post-Fukushima actions and programmes.<br />

These developments and their impact<br />

on design and operation of nuclear installations<br />

will be presented and discussed by<br />

high-level speakers from relevant institutions<br />

and companies.<br />

The Revised EU Nuclear Safety Directive<br />

Massimo Garribba, European Commission,<br />

Luxembourg<br />

The Revision of WENRA Reference Levels and<br />

their Implementation by WENRA Regulators<br />

Dr. Hans Wanner, ENSI (Eidgenössisches<br />

Nuklearsicherheitsinspektorat), Switzerland<br />

IAEA Activities Concerning Nuclear Safety<br />

After the Fukushima Accident<br />

Gustavo Caruso, International Atomic<br />

Energy Agency (IAEA), Austria<br />

The Revision of the German Regulations in<br />

the Light of Developments in the EU and<br />

Worldwide<br />

Tba, Anlagen- und Reaktorsicherheit GRS<br />

mbH, Germany (tbc)<br />

The Impact of New Safety Requirements on<br />

the Operation of Existing Installations in the<br />

Czech Republic<br />

Milan Sýkora, CEZ, a. s., Czech Republic<br />

The Impact of New Safety Requirements on<br />

the Design of New Nuclear Power Plants in<br />

the EU on the Example of EPR<br />

Jürgen Wirkner, AREVA GmbH, Germany<br />

Topical Session<br />

Nuclear Know-How Beyond<br />

Power Generation<br />

Wednesday ı May 6 th <strong>2<strong>01</strong>5</strong><br />

Coordinator: Dr. Stefan Nießen,<br />

AREVA GmbH, Germany<br />

FRM II: Neutrons for Industrial and Medical<br />

Applications<br />

Dr. Anton Kastenmüller, Technische<br />

Universität München, Germany<br />

Thermohydraulic Codes Applied to Wind<br />

Power and Combustion Engines<br />

Prof. Dr. Andreas Class, Karlsruher Institute of<br />

Technology, Germany<br />

Radioisotope Battery Technology in Space<br />

Marie-Claire Perkinson, European Aeronautic<br />

Defence and Space Company (EADS), United<br />

Kingdom<br />

Dr. Richard Ambrosi, University of Leicester,<br />

United Kingdom<br />

Gamma Irradiation an Indispensable Tool for<br />

Sterilization<br />

Reiner Eidenberger, Synergy Health<br />

Allershausen GmbH, Germany<br />

Naturally Occurring Radioactive Materials<br />

(NORM): A Comparison Between Geothermal<br />

Energy, Fracking and Uranium Mining<br />

Overburden<br />

Prof. Dr. Thorsten Schäfer, Karlsruher Institute<br />

of Technology, Germany<br />

Industry Applications of Nuclear Safety<br />

Based Non-Destructive Examination<br />

Technology<br />

Friedrich Mohr, iNDT GmbH, Germany<br />

AMNT <strong>2<strong>01</strong>5</strong><br />

Programme


<strong>atw</strong> Vol. 60 (<strong>2<strong>01</strong>5</strong>) | Issue 1 ı January<br />

Topical Session<br />

CFD Simulations for Reactor<br />

Safety Relevant Objectives<br />

Thursday ı May 7 th <strong>2<strong>01</strong>5</strong><br />

Coordinator: Dr. Andreas Schaffrath, Martina<br />

Scheuerer, Gesellschaft für Anlagen- und<br />

Reaktorsicherheit GRS mbH, Germany<br />

This session demonstrates the progress as<br />

well as its potential for their application regulatory<br />

practice. Current developments, examples<br />

(e.g. flow in PWR fuel assemblies,<br />

vortex formation at pump inlets, condensation<br />

induced water hammer, containment<br />

flows) and future needs are presented by<br />

worldwide leading technical experts in this<br />

area.<br />

CFD Application in Nuclear Reactor Safety<br />

Martina Scheuerer, Gesellschaft für<br />

Anlagen- und Reaktorsicherheit GRS mbH,<br />

Germany<br />

Current Developments in CFD Codes<br />

Dr. Thomas Frank, ANSYS/ MFBU –<br />

Mechanical-Fluids Business Unit, Germany<br />

LES Analysis of Flow in a Simplified PWR<br />

Assembly with Mixing Grid<br />

Dr. Ulrich Bieder, CEA/Centre de SACLAY,<br />

France<br />

Modelling of Passive Auto-Catalytic<br />

Recombiner Operational Behaviour with<br />

the Coupled REKODIREKT-CFX Approach<br />

Dr. Stephan Kelm, Forschungszentrum<br />

Jülich GmbH, Germany<br />

Investigation of Surface Vortex Formation at<br />

Pump Intakes in PWR<br />

Peter Pandazis, Dr. Andreas Schaffrath,<br />

Gesellschaft für Anlagen- und Reaktorsicherheit<br />

GRS mbH,<br />

Dr. Frank Blömeling, TÜV NORD SysTec<br />

GmbH & Co. KG, Germany<br />

CFD Simulations of Condensation Induced<br />

Water Hammer<br />

Dr. Sabin Ceuca (tbc), Technische Universität<br />

München, Germany<br />

CFD Simulations of Containment Flows<br />

Dr. Ed Komen (tbc), NRG, The Netherlands<br />

CFD for Two-Phase Flows: Status, Recent<br />

Trends and Future Needs<br />

Dr. Dirk Lucas, Helmholtz-Zentrum<br />

Dresden-Rossendorf, Germany<br />

Prof. Dr. Eckhart Laurien, University of<br />

Stuttgart, Germany<br />

Technical Session<br />

Reactor Physics, Thermo and<br />

Fluid Dynamics<br />

Topical Neutron Kinetics<br />

and Thermal Hydraulic<br />

Developments and<br />

Applications<br />

Wednesday ı May 6 th <strong>2<strong>01</strong>5</strong><br />

Chair: Dr. Birgit Wortmann, STEAG Energy<br />

Services GmbH, Germany<br />

The Use of Neutron Fluence Analyses as<br />

Verification of Reactor Pressure Vessel<br />

Shielding Design<br />

Lars Ackermann, AREVA GmbH, Germany<br />

Validation of MCNP for Skyshine Calculation<br />

Luc Schlomer, WTI GmbH, Germany<br />

VENUS 7: A Recent Evaluation for the IRPhE<br />

Handbook<br />

Dr. Winfried Zwermann, Gesellschaft fur<br />

Anlagen- und Reaktorsicherheit (GRS) mbH,<br />

Germany<br />

Nuclear Data Uncertainty Analysis With<br />

Perturbation Theory and Random Sampling<br />

Dr. Winfried Zwermann, Gesellschaft für<br />

Anlagen- und Reaktorsicherheit (GRS) mbH,<br />

Germany<br />

Depletion Calculations for a Fast Spectrum<br />

Fuel Assembly<br />

Alexander Aures, Gesellschaft fur Anlagenund<br />

Reaktorsicherheit (GRS) mbH, Germany<br />

Neutronic Modeling of a PWR Konvoi Type<br />

Reactor Using PARCS With Few Group Cross<br />

Section Generated With SCALE and SERPENT<br />

Joaquin Ruben Basualdo Perello, Karlsruhe<br />

Institute of Technology, Germany<br />

Monte Carlo Neutronics Investigations of<br />

VVER-1000 Fuel Assemblies<br />

Luigi Mercatali, Karlsruhe Institue of<br />

Technology, Germany<br />

Fundamentals of Heat Removal Accuracy ans<br />

Application Limits of Analytical and<br />

Numerical Calculation Methods: Examples<br />

from Nuclear Applications<br />

Dr. Andre Leber, WTI GmbH, Germany<br />

Technical Session<br />

Know-How, New Build and<br />

Innovations<br />

Innovative Concepts in Nuclear<br />

Technology<br />

Thursday ı May 7 th <strong>2<strong>01</strong>5</strong><br />

Chair: Dr. Dietrich Knoche, Westinghouse<br />

Electric Germany GmbH, Germany<br />

Advanced Reactor Concepts and Sustainable<br />

Nuclear Energy Strategy –Russian Trends<br />

Dr. Andrey Gagarinskiy, National Research<br />

Centre, Russia<br />

On the Use of a Molten Salt Fast Reactor for<br />

Transmutation Fulfilling the Requests of the<br />

Nuclear Phase Out Decision<br />

Dr. Bruno Merk, Helmholtz-Zentrum<br />

Dresden-Rossendorf (HZDR), Germany<br />

Modeling SFR Diagrid Expansion Reactivity<br />

Feedback by Coordinate Transformation of<br />

the Diffusion Equation<br />

Dr. Armin Seubert, Gesellschaft fur Anlagenund<br />

Reaktorsicherheit (GRS) mbH, Germany<br />

AREVA‘s Worldwide Contributions to Safety<br />

Improvement<br />

Marina Welker, AREVA GmbH, Germany<br />

AREVA‘s Alternative Way for Spare Parts<br />

Management<br />

Ulrich Kizak, AREVA GmbH, Germany<br />

Development of a Moderator System for a<br />

High-Brilliant Cold and Thermal Neutron<br />

Source<br />

Jan Philipp DabruckRWTH Aachen University,<br />

Germany<br />

Regulatory and Computerised<br />

Improvements<br />

Chair: Dr. Matthias Lamm, AREVA GmbH,<br />

Germany<br />

Training in a Plant Modernization Project<br />

Christof Pudelko, AREVA GmbH, Germany<br />

Supports for Equipment Components and<br />

Piping of Nuclear Power Plants: Advances in<br />

the Russian Regulatory Basis<br />

Dr. Yury Spirochkin Engineering Center of<br />

Nuclear Equipment Strength, Russia<br />

Design of Nuclear Building Structures and<br />

Components With Respect to Service Life<br />

and Reliability<br />

Dr. Rudiger Meiswinkel, TU Kaiserslautern,<br />

Germany<br />

Assessment of Containment Reinforced<br />

Concrete Structures Exposed to the<br />

Accidental Flooding by Using Abaqus FEA-<br />

Software: Solutions and Lessons-Learned<br />

Ulf Ricklefs, Welstinghouse Electric Germany<br />

GmbH, Germany<br />

Thermal and Mechanical Design of the<br />

Plasma Core CXRS Diagnostics of the ITER<br />

Nuclear Fusion Reactor<br />

Frank Giese, WTI GmbH, Germany<br />

AMNT <strong>2<strong>01</strong>5</strong> 39<br />

AMNT <strong>2<strong>01</strong>5</strong><br />

Programme


<strong>atw</strong> Vol. 60 (<strong>2<strong>01</strong>5</strong>) | Issue 1 ı January<br />

AMNT <strong>2<strong>01</strong>5</strong> 40<br />

Fast Neutron Detection With sic Semicoductor<br />

Detector at Elevated Temperatures<br />

Dora Szalkai, Karlsruhe Institute of<br />

Technology, Germany<br />

Surface Finish Influence on the Thermal<br />

Shock Performance of Beryllium<br />

Benjamin Spilker, Forschungszentrum Julich<br />

GmbH, Germany<br />

Creep Irradiation Testing of Copper Alloy for<br />

the ITER First Wall Panels<br />

Christoph Pohl, TUV Rheinland Industrie<br />

Service GmbH, Germany<br />

Campus Nuclear Energie<br />

Wednesday ı May 6 th <strong>2<strong>01</strong>5</strong><br />

Workshop Preserving<br />

Competence<br />

Wednesday ı May 6 th <strong>2<strong>01</strong>5</strong> &<br />

Thursday ı May 7 th <strong>2<strong>01</strong>5</strong><br />

Key Topic<br />

Enhanced Safety &<br />

Operation Excellence<br />

Topical Session<br />

Sustainable Reactor<br />

Operation Management –<br />

Safe, Efficient and Valuable<br />

Tuesday ı May 5 th <strong>2<strong>01</strong>5</strong><br />

Coordinator: Dr. Erwin Fischer, E.ON Kernkraft<br />

GmbH, Germany<br />

Every operator of a nuclear power plant<br />

worldwide strives for safety, efficiency and<br />

adding value. But what are the key factors to<br />

achieve these goals? For sure, the technological<br />

standards and herewith continuous investments<br />

in maintenance and technological<br />

development are essential. Of course, a strict<br />

and sound regulation with an independent<br />

authority of highest expertise is crucial, too.<br />

In this context this session provides an overview<br />

over best practices and state of the art<br />

scientific findings on the relevant topics in<br />

the field of efficient organization and responsible<br />

human performance. Questions of<br />

management systems, organizational setup<br />

are being presented and discussed as well as<br />

aspects of incorporating lessons learned and<br />

training.<br />

Organisational and Regulatory<br />

Background<br />

Welcome/Opening Remarks<br />

Dr. Erwin Fischer<br />

E.ON Kernkraft GmbH, Germany<br />

Management System and Organisational<br />

Setup as Determinants for a Successful<br />

Performance of Plant Staff<br />

Jürgen Schwarzin, E.ON Kernkraft GmbH,<br />

Germany<br />

Health, Safety and Environment – First!<br />

Matthias Röhrborn , RWE Power AG,<br />

Germany<br />

Environmental Management – How to Deal<br />

with EMAS and OSAS?<br />

Dr. Johann Oswald, NPP Isar, E.ON Kernkraft<br />

GmbH, Germany<br />

Procedures Incorporating<br />

Lessons Learned<br />

The Process of Evolving Improvement with<br />

Feedback of Experience in a NPP<br />

Ulrich Sander, NPP Neckarwestheim, EnBW<br />

Kernkraft GmbH, Germany<br />

German Information Notices – Interdisciplinary<br />

Event Assessment Resulting in<br />

Recommendations<br />

Dr. Dagmar Sommer, Gesellschaft für Anlagenund<br />

Reaktorsicherheit (GRS) mbH, Germany<br />

The “Human Factor”<br />

Developing and Preserving Requisite<br />

Qualification – Training at a Simulator<br />

Jochen Kruip, KSG Kraftwerks-Simulator-<br />

Gesellschaft mbH, GfS Gesellschaft für<br />

Simulatorschulung mbH, Germany<br />

Tools Supporting Human Performance<br />

Dr. Stephan Rahlfs, NPP Philippsburg, EnBW<br />

Kernkraft GmbH<br />

Frank Heinrich, E.ON Kernkraft GmbH,<br />

Germany<br />

Focus Session<br />

Radiation Protection<br />

Tuesday ı May 5 th <strong>2<strong>01</strong>5</strong><br />

Coordinator: Erik Baumann, AREVA GmbH,<br />

Germany<br />

Radiation Protection – a century of safety<br />

benefit for jobholders, public and environment.<br />

The development of protection principles<br />

is a long lasting process. It started with<br />

the increasing industrial application of X-rays<br />

more than 100 years ago. Today, there is a<br />

large number of national and international<br />

organization and governmental institutions<br />

dealing with the protection of occupationally<br />

exposed workers, of members of the public<br />

and of the general environment. This session<br />

presents the most recent status of discussions<br />

and developments in the fields of radiation<br />

protection during decommissioning,<br />

development of codes, standards and regulations.<br />

In Fact, it Protection of Human Beings and<br />

the Environment Against Ionizing Radiation<br />

– Some Historical Insights<br />

Erik Baumann, AREVA GmbH, Germany<br />

ALARA – How Much Radiation Protection is<br />

Reasonable?<br />

Dr. Gerhard Frank, Karlsruher Institut of Technology<br />

(KIT), Germany<br />

Radiological Protection Targets and<br />

Performance Indicators<br />

Gabriele Hampel, AXPO Power AG,<br />

NPP Beznau, Switzerland<br />

Dose Rate Measurements at the Presence of<br />

Surface-near Sources<br />

Sinisa Simic, TO.M.MA.S GmbH, Germany<br />

Incorporation Monitoring of Intakes During<br />

the Dismantling of Nuclear Facilities<br />

Martina Froning, Forschungszentrum Jülich<br />

GmbH, Germany<br />

Decommissioning Aspects – EC and IAEA<br />

Guidance on Exemption and Clearance Levels<br />

and Implications on Clearance in Germany<br />

Dr. Stefan Thierfeldt (tbc), Brenk<br />

Systemplanung GmbH, Germany<br />

Topical Session<br />

Fuel Management During the<br />

Last Cycles and Beyond<br />

Wednesday ı May 6 th <strong>2<strong>01</strong>5</strong><br />

Coordinators: Ulf Benjaminsson,<br />

Carina Önneby, Westinghouse Electric<br />

Sweden AB, Sweden<br />

Many utilities are currently facing a situation<br />

where the fuel and core components are to be<br />

effectively managed during the last cycles of<br />

operation and beyond. A key aspect is the experiences<br />

and strategies for core and fuel optimization<br />

with regard to flexibility and fuel<br />

cycle costs. With the completion of the operation,<br />

utilities must consider whether to reuse or<br />

dispose any residual fresh fuel assemblies. Disposal<br />

of other core components, such as control<br />

rods and BWR fuel channels is also to be<br />

performed. Moreover, damaged fuel rods remaining<br />

at the plant are to be prepared for safe<br />

transportation and disposal. Finally, fuel suppliers<br />

and utilities jointly have to ensure that the<br />

depleted fuel assemblies can be safely stored in<br />

dry storage facilities before final disposal.<br />

Fuel Related Experiences and Lessons Learend<br />

from Barsebäck 1 and 2.<br />

Fredrik Winge (tbc), Vattenfall/Ringhals, Sweden<br />

Strategies and experiences from using the<br />

fuel as effectively as possible within EKK<br />

Wolfgang Faber, E.ON Kernkraft GmbH,<br />

Germany<br />

AMNT <strong>2<strong>01</strong>5</strong><br />

Programme


<strong>atw</strong> Vol. 60 (<strong>2<strong>01</strong>5</strong>) | Issue 1 ı January<br />

Evaluation of Intermediate Term Dry Storage<br />

of Fuel<br />

Björn Andersson, Westinghouse Electric<br />

Sweden AB, Sweden<br />

Experiences from Potential Reuse Versus<br />

Disposal of Fresh BWR Fuel Assemblies<br />

Tba, Vattenfall Europe Nuclear Energy GmbH<br />

Tbd<br />

Sylvia Choihtramani Becerra/Robert<br />

Schneider, GNF ENUSA Nuclear Fuel S.A.<br />

Topical Session<br />

Current Issues and Learnings<br />

from the International<br />

Experience of Reactor<br />

Operation<br />

Thursday ı May 7 th <strong>2<strong>01</strong>5</strong><br />

Technical Session<br />

Operation and Safety of<br />

Nuclear Installations, Fuel<br />

Operation and Maintenace<br />

Wednesday ı May 6 th <strong>2<strong>01</strong>5</strong><br />

Chair: Dr. Jürgen Sydow, TÜV NORD SysTec<br />

GmbH & Co. KG, Germany<br />

Pipe Robots for Internal Inspection,<br />

Non-Destructive Testing and Machining of<br />

Pipeline Systems in Nuclear Power Stations<br />

Alexander Reiss, Inspector Systems<br />

Rainer Hitzel GmbH, Germany<br />

Lessons Learned From Operational<br />

Accompanying Temperature Measurements<br />

Dr. Sven H. Reese, E.ON Kernkraft GmbH,<br />

Germany<br />

Quality Assurance for Industrialization of<br />

Rodlet Refabrication for Power Ramps,<br />

in LECA-STAR Facility<br />

Cedric Plantegenest, CEA – Cadarache, France<br />

Examination of the Irradiated Mixed Carbide<br />

and Nitride Fuels as Part of Their Safety<br />

Evaluation<br />

Paul David William Bottomley, European<br />

Commission-JRC-Institute für Transurane,<br />

Germany<br />

Special Issues<br />

Chair: Dr. Anke Traichel, NUKEM Technologies<br />

Engineering Services GmbH, Germany<br />

Concept of Modular Heat Exchanger for<br />

Spent Fuel Pool Cooling<br />

Dr. Nader Ben Said, Westinghouse Electric<br />

Germany GmbH, Germany<br />

AMNT <strong>2<strong>01</strong>5</strong> 41<br />

Coordinator: Dr. Ludger Mohrbach, VGB<br />

PowerTech e.V., Germany<br />

Continuous improvement is the intrinsic target<br />

of day-to-day operation of nuclear power<br />

plants. Thus, global nuclear safety progressed<br />

by a factor of ten every ten years. The section<br />

highlights in-depth insights in seven persentations<br />

into current operational issues from<br />

seven countries.<br />

Commissioning of Atucha-2 and Taishan-1<br />

Tba<br />

Material Defects in Belgian Reactor Vessels<br />

Rene Delporte (tbc), Electrabel, Belgium<br />

Security of Supply in Central Europe after<br />

Shut-down of Grafenrheinfeld<br />

Tba, TenneT TSO GmbH, Germany<br />

New Energy Policy in France<br />

Gilbert Moritz (tbc), EDF Electricité de France,<br />

France<br />

Backfitting Measures at Swiss Nuclear Power<br />

Plants<br />

Martin Richner, AXPO Power AG, Switzerland<br />

Challenges of the Post-operational Period for<br />

Nuclear Power Plants<br />

Wittmann<br />

Operation of Nuclear Power Plants in the<br />

Spanish Grid<br />

Jose Antonio Prieto, Almaraz-Trillo Nuclear<br />

Power Plants, Spain<br />

NUGENIA: a Non Profit International Organization<br />

to Promote R&D for the Safe Long<br />

Term Operation of GENII and III Nuclear<br />

Power Plants<br />

Dr. Abderrahim Al Mazouzi, EDF – EDF R&D,<br />

France<br />

Control Room Technology<br />

Uwe Kimmeskamp, Bilfinger Mauell GmbH,<br />

Germany<br />

Statistical Analysis of Fatigue Data for<br />

Austenitic Stainless Steels in Water<br />

Environments<br />

Paul Wilhelm, AREVA GmbH, Germany<br />

PSA<br />

Replacement of RPV Head Spray System in<br />

NPP RH1<br />

Thomas Glaab, AREVA GmbH, Germany<br />

A Novel Approach for the Seismic Probabiistic<br />

Safety Assessment During the Design<br />

Stage of Non-Reactor Nuclear Facilities<br />

Maxi Mummert, NUKEM Technologies<br />

Engineering Services GmbH, Germany<br />

Modeling Software Failures of Digital I&C in<br />

Probabilistic Safety Analyses<br />

Dr. Mariana Jockenhövel-Barttfeld, AREVA<br />

GmbH, Germany<br />

Analysis of the Spent Fuel Pool of a Nuclear<br />

Power Plant, Taking Into Account Tolerable<br />

Down Times<br />

Dr. Günter Becker, RISA Sicherheitsanalysen<br />

GmbH, Germany<br />

Fuel<br />

Chair: Patrick Raymond, Commissariat<br />

à l‘énergie atomique et aux énergies<br />

alternatives (CEA), France<br />

Status of the Low Enriched Uranium UMo<br />

Dispersion Fuel Development for High<br />

Performance Research Reactors<br />

Dr. Leo Sannen, SCK-CEN, Belgium<br />

Advanced Statistical Design and Evaluation<br />

Method<br />

Steffen Kaefer, Westinghouse Electric<br />

Germany GmbH, Germany<br />

A Vision for Nuclear Reactor Safety<br />

Prof. Francesco D‘Auria, University of Pisa, Italy<br />

Emergency Response Exercises with<br />

Comprehensive aAccident Scenarios at<br />

Nuclear Power Plants<br />

Ole Staack, ESN Sicherheit und<br />

Zertifizierung GmbH, Germany<br />

On a New Method for the Diagnosis of the<br />

State of the Reactor Pressure Vessel<br />

Inventory During Severe Accidents<br />

Daniel Fiß, Hochschule Zittau/Görlitz,<br />

Germany<br />

Further Investigation on Light Gas Layer Erosion<br />

Using the Current ASTEC Model Basis<br />

Vera Koppers, Ruhr-Universität Bochum,<br />

Germany<br />

Assessment of Fission Product Release<br />

From Ex-Vessel Molten Pools Based on ACE<br />

Experiments<br />

Kathrin Agethen, Ruhr Universität Bochum,<br />

Germany<br />

SA: WASA-BOSS + CESAM<br />

Chair: Dr. Thorsten Hollands, Gesellschaft für<br />

Anlagen- und Reaktorsicherheit (GRS) mbH,<br />

Germany<br />

QUENCH-11 Simulations With the Severe Accident<br />

Analysis Code ASTEC V2.0 in CESAM<br />

Florian Gremme, Ruhr-Universität Bochum,<br />

Germany<br />

CESAM: Simulation of a Large Break LOCA<br />

Sequence in a German PWR Konvoi with the<br />

Severe Accident Code ASTEC<br />

Ignacio Gómez García-Torano, Karlsruhe<br />

Institute of Technology, Germany<br />

QUENCH-11 Simulations With the Severe Accident<br />

Analysis Code ASTEC V2.0 in CESAM<br />

Florian Gremme, Ruhr-Universität Bochum,<br />

Germany<br />

AMNT <strong>2<strong>01</strong>5</strong><br />

Programme


<strong>atw</strong> Vol. 60 (<strong>2<strong>01</strong>5</strong>) | Issue 1 ı January<br />

AMNT <strong>2<strong>01</strong>5</strong> 42<br />

CESAM: Simulation of a Large Break LOCA<br />

Sequence in a German PWR Konvoi with the<br />

Severe Accident Code ASTEC<br />

Ignacio Gómez García-Torano, Karlsruhe<br />

Institute of Technology, Germany<br />

Parametric Study on a KONVOI MB-LOCA<br />

Scenario for the Determination of Coolability<br />

Parameters<br />

Ailine Trometer, University of Stuttgart,<br />

Germany<br />

WASA-BOSS: Athlet-CD Model for Severe Accident<br />

Analysis for a Generic Konvoi Reactor<br />

Polina Tusheva, Helmholtz-Zentrum<br />

Dresden-Rossendorf (HZDR), Germany<br />

WASA-BOSS: Expansion of the Model-Basis<br />

in MELCOR<br />

Philipp Dietrich, Karlsruhe Institute of<br />

Technology, Germany<br />

WASA-BOSS: Investigation of the Coolability<br />

of Partly-Damaged BWR Core by Water<br />

Injection Into the RPV<br />

Dr. Valentino Di Marcello, Karlsruhe Institute<br />

of Technology, Germany<br />

Simulation of the Fukushima-Daiichi Unit 3<br />

Accident With ATHLET-CD as Part of the<br />

Collaborative Research Project WASA-BOSS<br />

Mathias Hoffmann, Ruhr-Universität<br />

Bochum, Germany<br />

Contributions for „WASA-BOSS“: Study of<br />

Containment Film Cooling With an Advanced<br />

Water Film Model<br />

Xi Huang, Karlsruhe Institute of Technology,<br />

Germany<br />

Key Topics<br />

Decommissioning<br />

Experience & Waste<br />

Management Solutions<br />

Welcome/Introduction<br />

Dr. Erich Gerhards, E.ON Kernkraft GmbH,<br />

Germany<br />

Status Quo and Future<br />

Challenges<br />

Decommissioning Projects in Germany –<br />

Perspectives From the Federal Level<br />

Dr. Bernhard Massing, Federal Ministry for<br />

the Environment, Nature Conservation, Building<br />

and Nuclear Safety (BMUB), Germany<br />

The Decision Regarding the “Right” Decommissioning<br />

and Dismantling Concept<br />

Dr. Ralf Versemann, RWE Power AG, Germany<br />

Factors for Successful<br />

Decommissioning<br />

Staff – A Key Component for Successful<br />

Decommissioning and Efficient Dismantling<br />

Ernst-Michael Züfle, Senior Advisor to CEO,<br />

Vattenfall GmbH, Germany<br />

Construction and Process Organization in a<br />

Nuclear Power Plant – A Constant Change?<br />

Dr. Walter Glöckle, Ministry of the<br />

Environment, Climate Protection and the<br />

Energy Sector, Baden-Württemberg, Germany<br />

Successful Interface Management Among<br />

the Remaining Operation, Dismantling and<br />

Recycling Management<br />

Andreas Ehlert, Energietechnische<br />

Gesellschaft im VDE (ETG), Germany<br />

Remaining Operation and Waste<br />

Management<br />

Safety Classifications and Reclassification of<br />

Systems<br />

Dr. Heinz-Walter Drotleff, Entsorgungskommission<br />

(ESK), Germany<br />

Efficient Recycling and Waste Management<br />

Frank Bolles, Burkhard Hartmann, EnBW<br />

Kernkraft GmbH, Germany<br />

qualification of old packages that have accumulated<br />

over decades.<br />

Involving representatives of the waste producers,<br />

responsible authorities and experts, this<br />

session will elaborate means and potentials<br />

for improvement and acceleration of the<br />

qualification process to deliver an annual<br />

amount of 10.000 m³ of radioactive waste<br />

starting from 2023.<br />

Welcome/Opening Remarks<br />

Presentations: Boundary Conditions for<br />

Waste and Disposal<br />

National Waste Management Plan<br />

Federal Ministry for the Environment, Nature<br />

Conservation, Building and Nuclear Safety<br />

(BMUB), (tbc)<br />

Final Repository Konrad – What Still Has to<br />

be Done<br />

Bundesamt für Strahlenschutz (BfS), (tbc)<br />

Task and Duties of the Coordinators<br />

GNS Gesellschaft für Nuklear-Service mbH /<br />

Energiewerke Nord GmbH (EWN), (tba)<br />

Panel Discussion: Final Disposal of 10.000 m³<br />

of Radioactive Waste per Year – A Joint<br />

Challenge<br />

Introduction by Moderator<br />

Panel Discussion<br />

Panelists: Authorities and independent<br />

experts, waste producers of public and<br />

private sector<br />

Key Topics: Qualification of waste packages<br />

– rules and regulations, standards and<br />

specific solutions, experiences gained and<br />

lessons learned<br />

Topical Session<br />

End of Life Applications and<br />

Infrastructure – Experiences and<br />

Way Forward<br />

Wednesday ı May 6 th <strong>2<strong>01</strong>5</strong><br />

Focus Session<br />

Experiences on Postoperation<br />

and Decommissioning in Germany<br />

Tuesday ı May 5 th <strong>2<strong>01</strong>5</strong><br />

Coordinator: Dr. Erich Gerhards,<br />

E.ON Kernkraft GmbH, Germany<br />

This session provides an overview of current<br />

developments and best practices in Germany.<br />

Essential questions regarding the decision for<br />

the “right” decommissioning and dismantling<br />

concept, success factors of an efficient<br />

decommissioning as well as the state-of-theart<br />

amongst others during the waste treatment<br />

will be discussed. The session adresses<br />

representatives of international and national<br />

service providers, public authorities and TSOs<br />

as well as operators.<br />

Focus Session<br />

Qualification for Konrad –<br />

What Is to Be Done?<br />

Tuesday ı May 5 th <strong>2<strong>01</strong>5</strong><br />

Coordinators: Iris Graffunder, Energiewerke<br />

Nord GmbH, Germany<br />

Dr. Astrid Petersen, GNS Gesellschaft für<br />

Nuklear-Service mbH, Germany<br />

Since 2002, regulations with binding conditions<br />

for final disposal of ILW/LLW in the Konrad<br />

repository exist. Still, there is uncertainty<br />

among the responsible waste producers concerning<br />

the qualification process of waste<br />

packages for final disposal. This comprises<br />

both the fabrication of new packages and the<br />

Coordinator: Thomas Seipolt, NUKEM<br />

Technologies Engineering Services GmbH,<br />

Germany<br />

This session is going to cover the “after-life”<br />

of nuclear facilities as well as decommissioning-<br />

related programs in Germany and in<br />

Europe with emphasis on European countries.<br />

European countries not only have<br />

shown different levels of progress in that<br />

perspective, but have chosen different ways<br />

to deal with the issue depending on their<br />

specifics. This session covers topics such us<br />

decommissioning know-how transfer, legal<br />

framework, support programs as well as reuse<br />

concepts.<br />

AMNT <strong>2<strong>01</strong>5</strong><br />

Programme


<strong>atw</strong> Vol. 60 (<strong>2<strong>01</strong>5</strong>) | Issue 1 ı January<br />

Decommissioning Documents and Pilot<br />

Dismantling – Support for the Armenian NPP<br />

Ronald Rieck, NUKEM Technologies<br />

Engineering Services GmbH, Germany<br />

IAEA Decommissioning Programs and<br />

Support<br />

Vladimir Michal, International Atomic Energy<br />

Agency, Vienna International Centre, Austria<br />

Second Life of a Nuclear Site – Experiences<br />

and Lessons Learned<br />

Dr. Markus Storcz, RWE Power AG, Germany<br />

INPP Decommissioning: Progress and Future<br />

Challenges<br />

Darius Janulevicius, State Enterprise Ignalina,<br />

Italy<br />

Engineering 3D Models for Decommissioning<br />

Alexandr Kanishev, Vladislav Tikhonovsky,<br />

CJSC NEOLANT, Russia<br />

Topical Session<br />

Comprehensive Solutions<br />

for Waste and Spent Fuel<br />

Management: The Key to<br />

Public Acceptance from<br />

New Build to Phase Out<br />

Thursday ı May 7 th <strong>2<strong>01</strong>5</strong><br />

Coordinator: Dr. Jürgen Skrzyppek,<br />

Stefan Weber, GNS Gesellschaft für<br />

Nuklear-Service mbH, Germany<br />

Today, solutions for the disposal of radioactive<br />

waste from operating and dismantling of<br />

NPPs do not only have to be technically<br />

feasible, but must be communicable to the<br />

public. Especially for planned new builds,<br />

the issue of disposal has become a key<br />

factor in public acceptance. This session will<br />

offer international comparison of the challenges<br />

and advances of waste management<br />

as well as disposal and its relevance to the<br />

situation of nuclear energy in the respective<br />

country.<br />

Obtaining Completely Fuel Free Reactors as<br />

a Precondition for Dismantling<br />

Tba, RWE/ NPP Biblis, Germany<br />

Safe Dismantling Together with Reliable<br />

Waste Management of Nuclear Power Plants<br />

of the First Generation ‐ A Key Factor for<br />

Acceptance of New Build Projects<br />

Tba<br />

Public Acceptance for a Repository Site and<br />

its Simultaneous Influence on Decisions for<br />

the Extension of Nuclear Power<br />

Tba, Posiva Oy, Finland<br />

Early Engagement of all Stakeholders Along<br />

Potential Transport Routes to a Repository<br />

Site<br />

Tba, NWMO, Canada<br />

Ensuring Dismantling and Disposal Projects<br />

in the Long Term – Governmental<br />

Responsibility<br />

Tba, NDA, United Kingdom<br />

Technical Session<br />

Radioactive Waste Management,<br />

Storage and Disposal<br />

Characterisation<br />

Wednesday ı May 6 th <strong>2<strong>01</strong>5</strong><br />

Chair: Werner Stratmann, STEAG Energy<br />

Services GmbH, Germany<br />

Gamma-Induced Radiation Damage in Spent<br />

Nuclear Fuel<br />

Christian Herold, RWTH Aachen, Germany<br />

Progress in the Non-Destructive Analysis of<br />

Radioactive Waste Drums to Fulfil Storage<br />

Acceptance Criteria<br />

Dr. Marina Sokcic-Kostic, NUKEM Technologies<br />

Engineering Services, Germany<br />

ANNA - A New Flexible Code for Best-<br />

Estimate Neutron Activation Calculations<br />

Lars Ackermann, AREVA GmbH, Germany<br />

Monte-Carlo Calculations of the Radiation<br />

Field in a Rock Salt Horizontal Emplacement<br />

Gallery of an Underground Nuclear Waste<br />

Disposal Facility<br />

Héctor Saurí Suárez, Karlsruher Institut für<br />

Technologie (KIT), Germany<br />

Treatment Disposal I<br />

Chair: Klaus Büttner, NUKEM Technologies<br />

Engineering Services GmbH, Germany<br />

Pyrohydrolysis: A Universal Tool for the<br />

Treatment of Organic Radwaste<br />

Dr. Georg Braehler, NUKEM Technologies<br />

Engineering Services GmbH, Germany<br />

Sorbents for Sr-90-Removal<br />

Dr. Alexander Zulauf, NUKEM Technologies<br />

Engineering Services, Germany<br />

Qualification Procedure for the Konrad<br />

Repository on Example of Disposal of<br />

Activated Components of the Forschungs-<br />

Neutronenquelle Heinz Maier-Leibnitz<br />

(FRM II)<br />

Patrick Halama, EWN GmbH, Germany<br />

Treatment Disposal II<br />

Chair: Klaus Büttner, NUKEM Technologies<br />

Engineering Services GmbH, Germany<br />

Lessons Learned from 1000 CASTOR<br />

Dispatches<br />

Wolfgang Reuter, GNS Gesellschaft für<br />

Nuklear-Service mbH, Germany<br />

Ageing of Elastomeric Seals for Storage<br />

Containers<br />

Anja Kömmling, Federal Institute for<br />

Materials Research, Germany<br />

Results and Conclusions From the German<br />

P&T Study – a View of the Contributing<br />

Helmholtz Research Centres<br />

Dr. Bruno Merk, Helmholtz-Zentrum<br />

Dresden-Rossendorf (HZDR), Germany<br />

Technical Session<br />

Decommissioning of Nuclear<br />

Installations<br />

Decommissioning of Nuclear<br />

Facilities – Challenges and<br />

Solutions<br />

Thursday ı May 7 th <strong>2<strong>01</strong>5</strong><br />

Chair: Stefan Klute, Siempelkamp<br />

Nukleartechnik GmbH, Germany<br />

Source Term Reduction Prior to Decommissioning<br />

and Dismantling AREVA‘ s<br />

Decontamination Technology<br />

Dr. Christian Topf, AREVA GmbH, Germany<br />

Detection of Contaminations in Pipes With<br />

OSL-Dosimetry: Test Measurements<br />

Uwe Reichelt, TU Dresden, Germany<br />

Dismantling of SVAFO Research Reactors<br />

R2&R2-0<br />

Hans-Uwe Arnold , AREVA GmbH, Germany<br />

Further Dismantling Activities of the<br />

Obrigheim NPP Reactor<br />

Dr. Ralf Borchardt, Energiewerke Nord<br />

GmbH, Germany<br />

Sorbents for Sr-90-Removal<br />

Dr. Alexander Zulauf, NUKEM Technologies<br />

Engineering Services, Germany<br />

Characterization and Remediation of Contaminated<br />

Concrete at Nuclear Power Plants<br />

Richard Mcgrath, USA<br />

AMNT <strong>2<strong>01</strong>5</strong> 43<br />

AMNT <strong>2<strong>01</strong>5</strong><br />

Programme


<strong>atw</strong> Vol. 60 (<strong>2<strong>01</strong>5</strong>) | Issue 1 ı January<br />

44<br />

KTG INSIDE<br />

Inside<br />

Liebe Leserinnen und Leser, im Jahr 2<strong>01</strong>4 sind vier neue Kernkraftwerke weltweit ans Netz gegangen, davon<br />

drei allein in China. Weitere 26 sind dort im Bau. Das Land mit dem größten Wachstumspotenzial und Energiehunger<br />

setzt verstärkt auf Kernenergie, um die Umweltverschmutzung durch die Kohleverstromung und die damit verbundenen<br />

gesundheitlichen Gefahren nachhaltig zu reduzieren. Und auch im Rahmen der internationalen Bemühungen um Klimaschutz<br />

und CO 2 -Reduktionen ist Kernenergie inzwischen eine Option für den Weltklimarat.<br />

In Deutschland zeigt sich derweil immer deutlicher die<br />

Tragweite von nicht zu Ende gedachten politischen Entscheidungen.<br />

Der Kernenergieausstieg lässt die ehrgeizigen<br />

CO 2 -Ziele der Bundesregierung wanken. „Dreckige“ Kohlekraftwerke<br />

ersetzen in der Grundlastversorgung die Kernenergie,<br />

weil die entsprechenden CO 2 -Zertifikate so billig<br />

sind. Der EU-Emissionshandel liegt wegen politischer Eingriffe<br />

und falscher Rahmenbedingungen am Boden. Und<br />

damit rechnet sich selbst der Einsatz moderner und umweltfreundlicher<br />

Gas- und Kohlekraftwerke nicht mehr.<br />

Während die Erneuerbaren zeitweise im Überfluss ins<br />

Netz drücken, leidet insgesamt die Versorgungssicherheit.<br />

Auf Veranlassung des Netzbetreibers musste beispielsweise<br />

2<strong>01</strong>4 das Kernkraftwerk Brokdorf die Revision verschieben.<br />

Gleichzeitig ergreifen die europäischen Nachbarn im<br />

Osten technische Maßnahmen, um die ungebremste<br />

Stromeinspeisung aus Deutschland zu Spitzenzeiten der<br />

regenerativen Erzeugung zu verhindern. Erforderliche Infrastrukturinvestitionen<br />

in Deutschland bleiben hingegen<br />

aus: zu wenig Planungssicherheit und jede Menge regionale<br />

Widerstände. Und die technische Umsetzung von Großspeichern<br />

ist nach wie vor nicht gelöst. Die „Dunkelflaute“<br />

wird bei weiter steigendem Anteil der Regenerativen immer<br />

mehr zum Problem, technisch wie auch wirtschaftlich.<br />

Fazit: Der Energiemarkt funktioniert nicht mehr.<br />

Gleichzeitig versucht die Bundesregierung die durch<br />

ihre aktionistischen Eingriffe selbst verursachten Probleme<br />

bei Energieversorgung und Klimaschutz auf die Industrie<br />

und damit letztlich alle Bürger abzuwälzen. Das betrifft<br />

in gleichem Maße den vom Erneuerbare-Energie-Gesetz<br />

(EEG) beeinflussten hohen Strompreis – dem inzwischen<br />

in Europa nach Dänemark mit Abstand zu anderen<br />

EU-Staaten zweithöchsten – wie den verordneten Zwang<br />

zur Häuserdämmung. Und für die weitere Entsorgung<br />

werden neue zusätzliche Zwischenlagergenehmigungen<br />

für Abfälle aus der Wiederaufarbeitung gefordert, weil<br />

diese politisch motiviert nicht mehr in das dafür vorgesehene<br />

zentrale und genehmigte Lager dürfen.<br />

Die Bundesregierung zeigt sich dennoch überrascht,<br />

dass ihre Eingriffe mit Konsequenzen insbesondere für die<br />

großen Energieversorger verbunden sind und diese unter<br />

wirtschaftlichen Gesichtspunkten zum Handeln gezwungen<br />

werden. Das über Jahrzehnte gesamtgesellschaftlich<br />

eingeschwungene System zwischen Industrie, Politik und<br />

Gesellschaft ist aus dem Takt.<br />

Mich persönlich erstaunt bei diesen Entwicklungen in<br />

Deutschland am meisten, dass die politisch Verantwortlichen<br />

immer wieder von Konsequenzen überrascht werden,<br />

die doch eigentlich recht gut im Voraus zu berechnen<br />

waren. Ein Beispiel dafür ist die Diskussion um die Entsorgungskosten.<br />

Auf Basis geprüfter Konzepte wurden<br />

über Jahrzehnte Rückstellungen aufgebaut und bestätigt.<br />

Für den Wegfall von Planungs- und Geschäftsgrundlagen<br />

kann man die Unternehmen der Energiewirtschaft aber<br />

tatsächlich nicht verantwortlich machen; weder für den<br />

um Jahrzehnte verschobenen Bau eines Endlagers für<br />

hochradioaktive Abfälle noch für die gesetzliche „Enteignung“<br />

ihrer Kraftwerke und den damit verbundenen wirtschaftlichen<br />

Verlust.<br />

Liebe Leserinnen und Leser, ich möchte mich weder vom<br />

bisherigen Bild der ingenieurtechnisch geprägten und innovativen<br />

Bundesrepublik verabschieden, noch vom Wirtschaftsstandort.<br />

Die Erkenntnisse des Bundeswirtschaftsministers<br />

lassen mich hier ein wenig hoffen. Schließlich hat<br />

er die Komplexität der Energiewende erkannt und auch das<br />

EEG als ungeeignetes Mittel zur Steuerung der Energiesysteme<br />

adressiert. Wir dürfen dennoch gespannt sein, wie die<br />

übergeordneten energiepolitischen Ziele Wirtschaftlichkeit,<br />

Versorgungssicherheit und Umweltverträglichkeit in<br />

Deutschland wieder gleichermaßen Einzug halten.<br />

Ich wünsche Ihnen und uns allen für das Jahr <strong>2<strong>01</strong>5</strong>,<br />

dass wir auch weiterhin unsere Kompetenz und unser Engagement<br />

im Dienste der friedlichen Nutzung der Kernenergie<br />

zum Einsatz bringen können – in Deutschland und<br />

weit darüber hinaus!<br />

Ihre<br />

Dr. Astrid Petersen<br />

Vorsitzende der KTG e.V.<br />

KTG-Newsletter Nr. 4<br />

* Der vollständige<br />

Newsletter, u.a. mit<br />

detaillierten Informationen<br />

zu Vorstand<br />

und Aktivitäten der<br />

KTG-Sektionen ist<br />

auf den Webseiten<br />

der KTG verfügbar<br />

unter www.ktg.org |<br />

Service<br />

Liebe Leserinnen und Leser, wir haben in der Mitgliederversammlung der Kerntechnischen Gesellschaft e. V.<br />

(KTG) am 6. Mai 2<strong>01</strong>4 einstimmig eine neue Satzung verabschiedet, die u.a. eine Vereinfachung der Struktur vorsieht.<br />

Die Fusion der bisher 10 Ortssektionen zu den 5 Sektionen – Nord, Süd, West, Ost und Südwest – ist inzwischen<br />

umgesetzt. Informationen darüber, aber auch über die konstituierende Sitzung des KTG-Beirats und vieles mehr<br />

finden sie in diesem Newsletter*.<br />

Weiterhin ist es uns sehr wichtig, dass der KTG-Newsletter<br />

insbesondere durch Beiträge von IHNEN – den KTG-<br />

Mitgliedern – lebt, daher gilt nach wie vor: Ihr Feedback<br />

aber auch Ihr Input ist ausdrücklich erwünscht. Lob, Kritik<br />

und Verbesserungsvorschläge, aktuelle Themen, interessante<br />

Beiträge und News aus der Welt der Kerntechnik<br />

senden Sie gerne an: newsletter-input@ktg.org.<br />

Die nächste Ausgabe des Newsletters ist für das<br />

II. Quartal <strong>2<strong>01</strong>5</strong> geplant mit Einsendeschluss für Beiträge<br />

28. Februar <strong>2<strong>01</strong>5</strong>. Ihr Redaktionsteam<br />

KTG Inside


Unsere Jahrestagung – die gemeinsame Fachkonferenz von KTG und DAtF<br />

5.–7. Mai <strong>2<strong>01</strong>5</strong> Estrel Convention Center Berlin ı Deutschland<br />

Frühbucherrabatt!<br />

Bis zum 31. Januar <strong>2<strong>01</strong>5</strong><br />

registrieren und<br />

bis zu 170 EUR sparen!<br />

Key Topics<br />

Kompetenz & Innovation<br />

Sicherheitsstandards & Betriebsexzellenz<br />

Rückbauerfahrung & Entsorgungslösungen<br />

Stilllegung und Entsorgung im Fokus<br />

Unsere Jahrestagung bietet mit einer Vielzahl an Vorträgen und<br />

Diskussionen in Plenarsitzung, Technischen Sitzungen, Fach- und<br />

Fokussitzungen ein zweieinhalbtägiges Programm der Extraklasse.<br />

Experten aus Theorie und Praxis diskutieren aktuelle Fragestellungen<br />

und neueste Erkenntnisse.<br />

3 Gold Sponsor<br />

3 Silber Sponsoren<br />

Aktuelle Top-Themen<br />

3 Stilllegung<br />

3 Nachbetrieb<br />

3 Rückbau<br />

3 Abfallmanagement<br />

3 Konditionierung<br />

3 Transporte<br />

3 Zwischenlagerung<br />

3 Endlagerung<br />

Unsere Jahrestagung – das Original seit 45 Jahren.<br />

Hier trifft sich die Branche.<br />

www.unserejahrestagung.de


<strong>atw</strong> Vol. 60 (<strong>2<strong>01</strong>5</strong>) | Issue 1 ı January<br />

46<br />

KTG INSIDE<br />

Aktuelles und Kernenergie-News<br />

Neuformierung der KTG‐Sektionen<br />

Im Rahmen der Strukturvereinfachung der KTG wurden<br />

die bisherigen 10 Ortssektionen wie folgt fusioniert:<br />

• Erlangen/Nürnberg und München bilden die Sektion<br />

Süd<br />

• Karlsruhe-Mannheim-Stuttgart und Rhein-Main bilden<br />

die Sektion Süd-West<br />

• Berlin/Brandenburg/Greifswald und Sachsen bilden<br />

die Sektion Ost<br />

• Rheinland und Rhein-Ruhr bilden die Sektion West<br />

• Hannover/Braunschweig und Norddeutschland bilden<br />

die Sektion Nord<br />

Sektion Süd<br />

Nach dem Zusammenschluss der KTG-Ortssektionen Erlangen/Nürnberg<br />

und München vereint die Sektion Süd ca. 600<br />

Mitglieder – vorrangig aus den Kernkraftwerken Gundremmingen,<br />

Isar und Grafenrheinfeld sowie den Unternehmen<br />

GRS, AREVA, dem TÜV Süd und der TU München (FRM II).<br />

Neben dem „internen“ Erfahrungsaustausch und der<br />

Vernetzung der Mitglieder in den einzelnen Unternehmen<br />

sowie regelmäßigen Vortragsveranstaltungen an den jeweiligen<br />

Standorten sollen zukünftig auch gemeinsame<br />

Veranstaltungen durchgeführt werden.<br />

Wenn passend, sollen aber auch „externe“ Veranstaltungen<br />

dazu beitragen, das Wissen über und die sachliche<br />

Auseinandersetzung mit kerntechnischen Themen zu erhöhen.<br />

Außerdem zeigen die Mitglieder der Sektion durch<br />

ihr berufliches und persönliches Engagement, dass sie als<br />

Experten in allen Bereichen der Kernenergie verantwortungsvoll<br />

und nachhaltig handeln. Auf diese Weise möchten<br />

sie zur Versachlichung des Themas in Deutschland beitragen.<br />

Auch weiterhin sollen Exkursionen – u.a. im Rahmen<br />

von Veranstaltungen an den jeweiligen Standorten – für<br />

die Mitglieder angeboten werden. Wichtig ist dem Vorstand,<br />

den Erfahrungsaustausch mit den anderen neu gegründeten<br />

Sektionen sowie den Fachgruppen zu intensivieren.<br />

Informationen auf der neu zu gestaltenden Internetseite<br />

der Sektion sollen zukünftig aktuell und vielseitig<br />

gestaltet werden.<br />

Sektion Südwest<br />

Die Sektion Südwest ist mit derzeit ca. 790 Mitgliedern die<br />

mitgliederstärkste Sektion der KTG. Sie ist im Jahr 2<strong>01</strong>4<br />

aus den beiden Ortssektionen Karlsruhe-Mannheim-Stuttgart<br />

und Rhein-Main entstanden.<br />

In ihrer Region (Baden-Württemberg und Hessen) befinden<br />

sich neben den (teils bereits abgeschalteten) Kernkraftwerken<br />

Biblis, Neckarwestheim, Obrigheim und Philippsburg<br />

zahlreiche Firmen und Forschungseinrichtungen<br />

mit energietechnischen/kerntechnischen Kompetenzen.<br />

Zu ihnen zählen z.B. AREVA Deutschland, Kraftanlagen Heidelberg,<br />

NUKEM, NIS sowie Westinghouse Electric Germany<br />

GmbH. Vertreten sind auch die Universitäten Frankfurt,<br />

Darmstadt und Stuttgart sowie Forschungseinrichtungen<br />

wie das GSI Helmholtzzentrum für Schwerionenforschung in<br />

Darmstadt und das Karlsruher Institut für Technologie<br />

(KIT).<br />

Die Mitglieder der Sektion Südwest, die sich hauptsächlich<br />

aus den oben genannten Einrichtungen und Unternehmen<br />

rekrutieren, sind sehr reisefreudig, weshalb technische<br />

Exkursionen – nicht nur zum Thema Kerntechnik –<br />

einen wichtigen Bestandteil der Vereinsarbeit bilden. Die<br />

Diskussionsfreudigkeit der Mitglieder kann auch bei Vortragsveranstaltungen<br />

mit anschließenden sogenannten<br />

Stammtischen ausgelebt werden.<br />

Besonders in den Forschungseinrichtungen aber auch<br />

bei den Firmen finden bisweilen interessante Vorträge und<br />

Vortragsreihen statt, auf die besonders aufmerksam gemacht<br />

wird.<br />

Sektion Ost<br />

Die Sektion Ost ist im Oktober 2<strong>01</strong>4 aus den bisherigen Sektionen<br />

Berlin/Brandenburg/Greifswald und Sachsen hervorgegangen.<br />

Mit einer Mitgliederzahl von ca. 160 ist die<br />

Sektion Ost die kleinste aller Sektionen.<br />

Hauptsächlich stammen die Mitglieder (von Nord<br />

nach Süd) von den EWN mit den Standorten Lubmin und<br />

Rheinsberg über eine ganze Reihe Ingenieurbüros in Berlin<br />

und Sachsen bis zu den drei großen öffentlichen Einrichtungen<br />

in Sachsen: Technische Universität Dresden,<br />

Forschungsstandort Dresden-Rossendorf (Sitz vom Helmholtz-Zentrum<br />

Dresden-Rossendorf und Verein für Kernverfahrenstechnik<br />

und Analytik Rossendorf) sowie der Hochschule<br />

Zittau/Görlitz (alle 4 KOMPOST KOMPetenzzentrum<br />

OST).<br />

Wir bieten unseren Mitgliedern und externen Gästen<br />

regelmäßig:<br />

• Vortragsveranstaltungen und Diskussionsrunden zu<br />

aktuellen Themen,<br />

• Kolloquien in Zusammenarbeit mit dem VDI/GET und<br />

dem KOMPOST,<br />

• Exkursionen zu kerntechnischen und Kerntechnik nahen<br />

Einrichtungen,<br />

• Verbindungen zu anderen Sektionen der KTG in<br />

Deutschland und<br />

• lockere Gemeinschaftsabende an.<br />

Sektion West<br />

Die KTG-Sektion West ist aus den bisherigen Ortssektionen<br />

Rheinland und Rhein-Ruhr hervorgegangen.<br />

Die Mitglieder des Vorstandes der Sektion West sehen<br />

die Information über die friedliche Nutzung der Kernenergie<br />

in verschiedenen Technologiefeldern als ihre wichtigsten<br />

Ziele der Vorstandsarbeit an.<br />

Neben dem „internen“ Erfahrungsaustausch und den<br />

Netzwerken der Mitglieder sollen auch „externe“ Veranstaltungen<br />

dazu beitragen, das Wissen über und die sachliche<br />

Auseinandersetzung mit kerntechnischen Themen<br />

zu erhöhen. Zudem soll durch das persönliche und berufliche<br />

Engagement der Mitglieder der Sektion deutlich werden,<br />

dass hinter der Kernenergie Fachleute und verantwortungsvoll<br />

handelnde Menschen stehen, die als Teil<br />

dieser Gesellschaft sich für die Versachlichung einer über<br />

viele Jahre in Deutschland stark emotionalisierten Debatte<br />

einsetzen.<br />

Neben regelmäßigen Vortragsveranstaltungen werden<br />

auch jährlich Exkursionen für die Mitglieder angeboten.<br />

Wichtig ist dem Vorstand, den Erfahrungsaustausch mit<br />

den anderen Sektionen und Fachgruppen zu intensivieren.<br />

Informationen auf den Internetseiten der Sektionen<br />

sollen zukünftig noch aktueller und vielseitiger gestaltet<br />

werden.<br />

Mit einem interessanten Angebot der Sektion West will<br />

der Vorstand die Sektion, die aktuell ca. 530 Mitglieder<br />

umfasst, für neue Mitglieder attraktiv machen.<br />

Konstituierende Sitzung des Beirats<br />

Am 5. November 2<strong>01</strong>4 fand in Berlin die konstituierende<br />

Sitzung des KTG-Beirats statt. Die anwesenden Beiratsmitglieder<br />

haben Dr. Wolfgang Steinwarz (Siempelkamp<br />

KTG Inside


<strong>atw</strong> Vol. 60 (<strong>2<strong>01</strong>5</strong>) | Issue 1 ı January<br />

Nukleartechnik GmbH & Sprecher der Sektion West) zum<br />

Vorsitzenden des Beirates und Iris Graffunder (EWN<br />

GmbH, Betriebsstätte Karlsruhe & Sprecherin Fachgruppe<br />

Stilllegung und Entsorgung) zur stellvertretenden Vorsitzenden<br />

des Beirates gewählt. In der Sitzung wurden Vorschläge<br />

für den neu zu wählenden KTG-Vorstand diskutiert<br />

und das nächste Beiratstreffen für 29. Januar <strong>2<strong>01</strong>5</strong><br />

geplant.<br />

Neuer Vorstand bei Women in<br />

Nuclear (WiN) Germany<br />

Auf der diesjährigen Mitgliederversammlung von WiN<br />

Germany am 14. November 2<strong>01</strong>4 bei der Westinghouse<br />

Electric GmbH in Mannheim waren die WiNners aufgerufen,<br />

einen neuen Vorstand sowie die Präsidentin zu wählen.<br />

Die bisherige Präsidentin Jutta Jené wurde mit großer<br />

Zustimmung in ihrem Amt für weitere zwei Jahre<br />

bestätigt.<br />

Ihr zur Seite stehen im Vorstand zukünftig Marika Didonaki<br />

(Budgetbeauftragte), Hedjeh Emami-Far (Leiterin<br />

AG Kommunikation), Karin Reiche (AG Messen & Veranstaltungen),<br />

Maxi Mummert (AG Internet), Dr. Christien Zedler<br />

(AG Bildung), Beate Scheffler (AG Networking) und Yvonne<br />

Broy (Sponsoring-Beauftragte).<br />

Die bisherige Leiterin der AG-Bildung, Birgit Felgenhauer,<br />

stand wegen beruflicher Veränderung nicht mehr zur<br />

Wiederwahl. Ihr folgt Christien Zedler ins Amt. „Wir danken<br />

Birgit Felgenhauer ganz herzlich für ihr Engagement im<br />

WiN-Vorstand und für die AG-Bildung und freuen uns auf<br />

die Zusammenarbeit mit Christien Zedler“, sagte Präsidentin<br />

Jutta Jené.<br />

Auch wenn in Deutschland der Ausstieg aus der Kernenergie<br />

beschlossen worden ist, wollen die deutschen<br />

WiNners nicht nur das „interne“ Networking pflegen, sondern<br />

sich auch weiterhin aktiv im internationalen Rahmen<br />

– WiN Europe bzw. WiN Global – betätigen. Nächste Gelegenheit:<br />

WiN Global Conference vom 24. bis 28. August<br />

<strong>2<strong>01</strong>5</strong> in Wien.<br />

Zum vierten Mal hatte der Verein den WiN-Germany-<br />

Preis ausgeschrieben, der als eine besondere Anerkennung<br />

für den Nachwuchs in der Nukleartechnik vergeben<br />

wird. Aus den von jungen Wissenschaftlerinnen bzw. Ingenieurinnen<br />

eingereichten Arbeiten nahm eine Jury vorab<br />

in einem ersten Auswahlverfahren aus allen eingegangenen<br />

Bewerbungen drei Kandidatinnen in die engere<br />

Wahl – darunter auch Christine Schumacher vom Forschungszentrum<br />

Jülich. Mit ihrem Vortrag „Entwicklung<br />

einer Trennmethode für Radionuklide in wässrigen Umweltproben<br />

mit einem automatisierten Trennsäulensystem“<br />

überzeugte sie dann auch die „große“ Jury – die Teilnehmerinnen<br />

der Mitgliederversammlung, die mehrheitlich<br />

die Arbeit und den Vortrag von Christine Schumacher<br />

würdigten.<br />

Neben einer Urkunde und einer Geldprämie erhält<br />

Christine Schumacher – ebenso wie die beiden Platzierten<br />

Frances Viereckl (NUKEM) und Madeleine Weber (KIT) – die<br />

Möglichkeit, ihre Arbeit beim Workshop Kompetenzerhaltung<br />

anlässlich der Jahrestagung Kerntechnik <strong>2<strong>01</strong>5</strong> einzureichen.<br />

Nachwuchstagung der Jungen Generation<br />

Zur diesjährigen Nachwuchstagung der Jungen Generation<br />

haben sich ca. 40 Teilnehmer im Informationszentrum des<br />

Kernkraftwerks Isar getroffen, um über die wirtschaftlichen<br />

Auswirkungen der Energiewende zu diskutieren. Als<br />

durch die Abschaltung eines Blockes direkt „Betroffene“<br />

konnten der Anlagenleiter Isar, Dr. Kohlpainter, sowie Frau<br />

Zimmermann in ihrem Vortrag „Herausforderung an Betrieb<br />

und Rückbau“ auch aus ganz persönlicher Erfahrung<br />

berichten. Wie andere Standorte und Betreiber sich dieser<br />

Aufgabe stellen, neben der Ausrichtung auf eine neue<br />

Marktsituation, aber auch, wie die Mitarbeiter motiviert<br />

und mitgenommen werden sollen stellten Reinhold Scheuring<br />

(Kraftwerksleiter Kernkraftwerk Grafenrheinfeld) und<br />

Christoph Heil (Technischer Geschäftsführer der EnBW<br />

Kernkraft GmbH) dar. Dass mit dem Ausstiegsbeschluss<br />

auch die Entsorgungsfrage mehr in den Fokus rückt, zeigte<br />

Thomas Seipolt (Geschäftsführer der NUKEM Technologies<br />

Engineering Services GmbH). Er thematisierte insbesondere<br />

die zukunftssichere Behandlung radioaktiver Abfälle.<br />

Gleich zwei Vorträge hielt Detlef Fischer (Verband der Bayerische<br />

Energie- und Wasserwirtschaft e.V.). Er vertrat<br />

Dr. Kießling von E.ON mit dem Vortrag zur Stilllegung von<br />

Kraftwerken und dem derzeit viel diskutierten Kapazitätsmarkt.<br />

Zunächst hielt er jedoch einen wahrlich launigen<br />

Vortrag über die Energiewende. Darüber hinaus wurde die<br />

Situation der Netze von Ralf Schwarz (Bayernwerk AG) sowie<br />

die Energiebeschaffung/Bilanzkreismanagement von<br />

Thomas Darda (EnSo) beleuchtet.<br />

Abgerundet wurde die Veranstaltung mit einem Vortrag<br />

der KTG-Vorsitzenden, Dr. Astrid Petersen, die auf die<br />

neue, eher zurückhaltende Rolle der Kernenergie in Politik<br />

und Medien einging sowie mit dem Besuch der Papierfabrik<br />

UPM Plattling. Dieser Standort gehört zu den größten<br />

Energieverbrauchern der Region und ist aufgrund seiner<br />

Wettbewerbssituation auf dem internationalen Markt nur<br />

durch die Vergünstigungen überlebensfähig.<br />

Die Junge Generation bedankt sich bei E.ON Kernkraft<br />

sowie dem Kernkraftwerk Isar für die freundliche Unterstützung<br />

bei der Durchführung der Tagung.<br />

Splitter aus der Energiewelt<br />

• Leitartikel aus der Welt vom 17.11.2<strong>01</strong>4: Ökologisch<br />

entsorgtes Geld<br />

Bei der Energiepolitik gefährden die abrupten Kurswechsel<br />

der großen Koalition den Energiestandort<br />

Deutschland. Überforderte Öko-Populisten sind zunehmend<br />

mit der Korrektur eigener Fehler beschäftigt<br />

…<br />

• Schweinfurter Tagblatt, 05.11.2<strong>01</strong>4 zum Thema „Erfolgreicher<br />

Rückbau bei E.ON“: Ein leerer Sarkophag<br />

aus Beton<br />

Zum Thema Abschluss atomrechtlicher Rückbau Kernkraftwerk<br />

Würgassen mit Bildern & Interview von Dr.<br />

Ralf Güldner Vorsitzender der Geschäftsführung der<br />

E.ON-Kernkraft GmbH …<br />

• Spiegel Online vom <strong>01</strong>.12.2<strong>01</strong>4: Hier bekommen Sie<br />

reine Kernkraft<br />

Ein Augsburger Energieunternehmen will punkten, indem<br />

es einen Strom anbietet, der ausschließlich aus<br />

Kernkraft gewonnen wird. Kurios: Die Firma will nicht<br />

Nuklearfans ansprechen, sondern fortschrittliche Klimaschützer<br />

…<br />

Glosse<br />

Bemühungen für eine Laufzeitverlängerung der Camerata<br />

Nucleare endgültig gescheitert: Das Sinfonieorchester der<br />

Deutschen Energiewirtschaft stellt den Betrieb nach<br />

einem Konzert im Kloster Wettenhausen bei Günzburg<br />

endgültig ein.<br />

Denkt man an die großen Aktivitäten der Musiker in<br />

den vergangenen 28 Jahren seit der Gründung der<br />

Camerata Nucleare und die Kontamination weiter Landstriche<br />

mit einer hohen Dosis an klassischen Werken, die<br />

47<br />

KTG INSIDE<br />

KTG Inside


<strong>atw</strong> Vol. 60 (<strong>2<strong>01</strong>5</strong>) | Issue 1 ı January<br />

48<br />

KTG INSIDE<br />

regelmäßig zu Strahlung in den Gesichtern der Zuhörerschaft<br />

geführt haben, drängen sich uns Nukleartechnikern<br />

einige Fragen förmlich auf:<br />

• Benötigen wir für die Camerata Nucleare nicht eine<br />

Stilllegungsgenehmigung? Und falls ja, welche Behörde<br />

wäre hierfür eigentlich zuständig?<br />

• Müssen die Werkzeuge (Instrumente), die vielen Stunden<br />

hohen Aktivitäten ausgesetzt waren, jetzt einer Abklinglagerung<br />

zugeführt werden?<br />

• Was passiert mit den „Abfallprodukten“ aus langjähriger<br />

Produktion, den mit Tönen aktivierten silbernen<br />

Plastikscheiben?<br />

Doch lassen Sie uns hier und heute mit solchen Fragen<br />

keine schlafenden Hunde wecken, sondern lassen<br />

Sie uns hoffen, dass unsere Kollegen ihre Werkzeuge<br />

jetzt nicht dem „Sicheren Einschluss“ zuführen. Sie haben<br />

uns seit der Gründung des Orchesters 1986 viel<br />

Freude bereitet, und deshalb akzeptieren wir die Beendigung<br />

des „bestimmungsgemäßen Betriebs“ und sagen<br />

einfach nochmals:<br />

Herzlichen Dank den Mitgliedern der Camerata Nucleare<br />

und weiterhin alles Gute!!<br />

Kontakt<br />

Bernd Gulich<br />

Sprecher der Arbeitsgruppe Kommunikation<br />

bernd.gulich@eon.com<br />

Herzlichen<br />

Glückwunsch<br />

Januar <strong>2<strong>01</strong>5</strong><br />

95 Jahre wird im Januar<br />

9. Dr. Josef Fassbender, Jülich<br />

88 Jahre werden im Januar<br />

1. Prof. Dr. Werner Oldekop,<br />

Braunschweig<br />

3. Dipl.-Ing. Walter Jäger,<br />

Engelskirchen<br />

86 Jahre wird im Januar<br />

20. Dr. Devana Lavrencic-Cannata,<br />

Rom/I<br />

85 Jahre wird im Januar<br />

10. Dipl.-Ing. Hans-Peter Schmidt,<br />

Weinheim<br />

84 Jahre wird im Januar<br />

12. Dr. Rolf Hüper, Karlsruhe<br />

83 Jahre wird im Januar<br />

3. Dipl.-Ing. Fritz Kohlhaas, Kahl/M.<br />

82 Jahre werden im Januar<br />

7. Dr. Willi Biermann, Bergisch<br />

Gladbach<br />

9. Prof. Dr. Hellmut Wagner,<br />

Karlsruhe<br />

16. Heinz Fleischhacker, Lingen/Ems<br />

80 Jahre werden im Januar<br />

10. Dipl.-Ing. Walter Diefenbacher,<br />

Karlsruhe<br />

17. Dipl.-Ing. Helge Dyroff, Alzenau<br />

24. Theodor Himmel, Bad Honnef<br />

79 Jahre werden im Januar<br />

5. Obering. Peter Vetterlein,<br />

Oberursel<br />

11. Dipl.-Ing. Ulrich Moritz, Bergisch<br />

Gladbach<br />

23. Prof. Dr. Hartmut Schmoock,<br />

Norderstedt<br />

27. Dr. Peter Weimar, Karlsruhe<br />

30. Dipl.-Phys. Wolfgang Borkowetz,<br />

Rüsselsheim<br />

30. Dipl.-Ing. Friedrich Morgenstern,<br />

Essen<br />

78 Jahre werden im Januar<br />

7. Dipl.-Ing. Albrecht Müller,<br />

Niederrodenbach<br />

9. Dipl.-Ing. Werner Rossbach,<br />

Bergisch Gladbach<br />

10. Dipl.-Ing. Klaus Lehmann,<br />

Erlangen<br />

14. Dr. Angelika Hecker, Philippsburg<br />

25. Dipl.-Ing. (FH) Heinz Wolf,<br />

Philippsburg<br />

77 Jahre werden im Januar<br />

7. Dipl.-Ing. (FH) Manfred Schirra,<br />

Stutensee<br />

8. Dipl.-Ing. Wolfgang Repke,<br />

Waldshut<br />

10. Dr. Dieter Türck, Dieburg<br />

12. Dipl.-Ing. Hans Dieter Adami,<br />

Rösrath<br />

17. Dr. Dieter Fleischhammer, Dießen<br />

18. Dr. Werner Katscher, Jülich<br />

22. Dr. Franz Müller, Erlangen<br />

28. Dipl.-Ing. Erhard Müller, Gründau<br />

76 Jahre werden im Januar<br />

11. Dipl.-Ing. Gerwin H. Rasche,<br />

Hasloch<br />

13. Dr. Udo Wehmann, Hildesheim<br />

16. Dr. Wolfgang Kersting, Blieskastel<br />

21. Prof. Dr. Detlef Filges, Langerwehe<br />

23. Dipl.-Phys. Wolfram Gaide, Jülich<br />

28. Dr. Sigwart Hiller, Lauf<br />

75 Jahre wird im Januar<br />

4. Dipl.-Ing. Wolfgang Schemenau,<br />

Laudenbach<br />

70 Jahre wird im Januar<br />

6. Dr. Bruno Keck, Alzenau<br />

65 Jahre werden im Januar<br />

3. Dipl.-Ing. Christian Sauer, Hessheim<br />

10. Sten Adin, Västeras/S<br />

15. Dipl.-Ing. Andreas Hüttmann,<br />

Oering<br />

29. Dipl.-Ing. Hans-Jürgen Schartz,<br />

Waghäusel<br />

31. Dr. Bernd Lorenz, Essen<br />

60 Jahre werden im Januar<br />

8. Dr. Peer Dräger, München<br />

21. Dr. Christian Krause, Bonn<br />

25. Heinz-Ulrich Kraft,<br />

Schwanstetten<br />

28. Dr. Joachim Runkel MdL, Suthfeld<br />

50 Jahre werden im Januar<br />

9. Michael Lüdeke, Neuenkirchen<br />

11. Dr. Ben Volmert, Birmensdorf/CH<br />

23. Dipl.-Ing. Matthias Topp, Wiesloch<br />

24. Gero Spitzner, Fürth<br />

25. Dr. Guido Caspary, Aldenhoven<br />

31. Dipl.-Ing. Eckhard Stengert,<br />

Worms<br />

Februar <strong>2<strong>01</strong>5</strong><br />

87 Jahre werden im Februar<br />

10. Dipl.-Ing. Hans-Peter Schabert,<br />

Erlangen<br />

24. Dr. Dietrich Hiller, Wiesbaden<br />

86 Jahre wird im Februar<br />

20. Dr. Helmut Hübel, Bensberg<br />

85 Jahre wird im Februar<br />

5. Dr. Eberhard Teuchert,<br />

Leverkusen<br />

84 Jahre wird im Februar<br />

14. Dipl.-Ing. Heinrich Kahlow,<br />

Rheinsberg<br />

82 Jahre wird im Februar<br />

11. Dr. Rudolf Büchner, Dresden<br />

81 Jahre werden im Februar<br />

9. Dr. Horst Keese, Rodenbach<br />

12. Dipl.-Ing. Horst Krause, Radebeul<br />

23. Prof. Dr. Adolf Birkhofer, Grünwald<br />

79 Jahre werden im Februar<br />

6. Dr. Ashu-T. Bhattacharyya,<br />

Erkelenz<br />

17. Dr. Helfrid Lahr, Wedemark<br />

KTG Inside


<strong>atw</strong> Vol. 60 (<strong>2<strong>01</strong>5</strong>) | Issue 1 ı January<br />

78 Jahre werden im Februar<br />

5. Prof. Dr. Arnulf Hübner, Berlin<br />

6. Dipl.-Ing. Heinrich Moers,<br />

Florida/USA<br />

11. Dr. Günter Keil, Sankt Augustin<br />

11. Reiner Lembcke, Bad Vilbel<br />

18. Dipl.-Ing. Hans Wölfel,<br />

Heidelberg<br />

21. Dipl.-Ing. Hubert Andrae, Rösrath<br />

77 Jahre werden im Februar<br />

5. Dr. Friedrich-Peter Heigl,<br />

Frankfurt/M.<br />

15. Dr. Heiner Krug, Saarbrücken<br />

27. Dr. Klaus Wolfert, Ottobrunn<br />

76 Jahre werden im Februar<br />

3. Dr. Roland Bieselt, Kürten<br />

8. Dr. Joachim Madel, Sankt Ingbert<br />

8. Dr. Herbert Spierling, Dietzenbach<br />

22. Dr. Manfred Schwarz, Dresden<br />

15. Dipl.-Ing. Nicolaus Porschek,<br />

Hamburg<br />

23. Dipl.-Ing. Victor Teschendorff,<br />

München<br />

24. Dipl.-Ing. Ing. grad. Anton Scheuer,<br />

Kerpen<br />

28. Dr. Günther Dietrich, Holzwickede<br />

65 Jahre wird im Februar<br />

12. Dipl.-Ing. (TU) Karl-Heinz Durst,<br />

Hessdorf<br />

60 Jahre werden im Februar<br />

1. Dipl.-Ing. Wolfgang Filbert, Peine<br />

23. Dipl.-Ing. Wolfgang Storr,<br />

Möhrenfeld<br />

50 Jahre werden im Februar<br />

6. Dr. Ronald Hepper, Würzburg<br />

15. Joachim Dux, Bürstadt<br />

18. Sven Lahmann, Adenbüttel<br />

<br />

13. Oktober<br />

Prof. em Dr.-Ing<br />

Wolfgang Lischke<br />

Dresden<br />

13. November 2<strong>01</strong>4<br />

Prof. Dr. Horst Böhm<br />

Karlsruhe<br />

24. November 2<strong>01</strong>4<br />

Dr. Werner Meyer-Jungnick<br />

49<br />

KTG INSIDE<br />

75 Jahre werden im Februar<br />

8. Dipl.-Phys. Tadas D. Urbas,<br />

Neustadt<br />

9. Dr. Gerhard Preusche,<br />

Herzogenaurach<br />

13. Dr. Hans-Ulrich Fabian, Gehrden<br />

14. Kurt Ebbinghaus, Bergisch<br />

Gladbach<br />

21. Dr. Jürgen Langeheine, Gauting<br />

23. Dr. Gerhard Heusener, Bruchsal<br />

25. Prof. Dr. Sigmar Wittig, Karlsruhe<br />

70 Jahre werden im Februar<br />

1. Prof. Dr. Alfred Voß, Aidlingen<br />

11. Dipl.-Ing. Hans-Dieter Wallerius,<br />

Frankenthal<br />

Die Kerntechnische Gesellschaft e. V.<br />

gratuliert ihren Mitgliedern sehr<br />

herzlich zum Geburtstag<br />

und wünscht ihnen weiterhin<br />

alles Gute.<br />

KTG Inside<br />

Verantwortlich für den Inhalt:<br />

Die Autoren.<br />

Lektorat: Sibille Wingens,<br />

Kerntechnische Gesellschaft e.V.<br />

Robert-Koch-Platz 4<br />

1<strong>01</strong>15 Berlin<br />

Tel.: +49 30 498555-10, Fax: -19<br />

E-Mail: s.wingens@ktg.org<br />

Internet: www.ktg.org<br />

Willich<br />

Die KTG verliert in ihnen langjährige<br />

Mitglieder, denen sie ein ehrendes<br />

Andenken bewahren wird.<br />

Ihren Familien gilt<br />

unsere Anteilnahme.<br />

KTG Inside


<strong>atw</strong> Vol. 60 (<strong>2<strong>01</strong>5</strong>) | Issue 1 ı January<br />

60 TH YEAR ATW 50<br />

die atomwirtschaft<br />

Vol. I<br />

Issue 1<br />

January 1956<br />

Foreword<br />

The idea of the atomic structure of matter came from philosophic speculations and was proven by theoretical and experimental<br />

research. Its results provide to mankind an energy form of its strongest concentration. In its practical use it<br />

initially served war technology. This use woke the emotional defence of mankind feeling threatened as well as the desire<br />

to use this power source for peacefully purposes and to exploit it for the economic sector.<br />

Already today nuclear energy is an important replenishment<br />

of the world energy potential which exists alongside<br />

classical energy sources. An increasing number of companies<br />

of different businesses need continuous information<br />

about the intentions of nuclear energy use: the chemical<br />

industry, the electrical industry, the energy industry, the<br />

measuring instruments industry and all branches of mechanical<br />

engineering, which are part of this new development<br />

from exploitation of minerals to reactor constructions.<br />

Added to this are all companies and specialists that pay<br />

attention to the allocation of isotopes. While there exists to<br />

necessary degree scientific literature for nuclear physics<br />

and related fields, there is a lack of a systematically handling<br />

of newly arising economic problems. It thereby appears<br />

irrational to split information and news into different<br />

specialist journals.<br />

The present journal will in detail and with objective<br />

clarity report on all economic questions with regard to<br />

nuclear transformation. Scientific and chemical engineering<br />

topics are only to the extend part of the programme as<br />

long as they are being essential to the understanding of<br />

economic questions. The information will be extensive and<br />

concentrated and will cover economic contexts including<br />

news, legal questions as well as questions on operational<br />

and social safety.<br />

With the editorial experience by the publisher the<br />

journal will concentrate and rationalize the reading mater.<br />

Especially its documentation, which sighted and reliably<br />

provides a pictures of the happenings in Germany and the<br />

most important countries in the world, will inform the<br />

reader quick and briefly in an intelligible language.<br />

Thus the ATOMWIRTSCHAFT should serve above all a<br />

serious and concentrated reporting and should be a conscientious<br />

advisor on a new promising field of work of science<br />

and technics beyond German speaking regions.<br />

The Publisher<br />

Siegfried Balke, Heinrich Freiberger, Karl Hecht, W. Alexander Menne,<br />

Herbert Seidl and Kurt Sauerwein<br />

Zum Geleit<br />

Die Vorstellung vom atomaren Aufbau der Materie erwuchs aus philosophischer Spekulation und wurde durch theoretische<br />

und experimentelle Forschungen erwiesen. Ihre Ergebnisse stellen der Menschheit eine Energieform in stärkster<br />

Konzentration zur Verfügung. In ihrer praktischen Verwendung diente sie zunächst der Kriegstechnik. Diese Anwendung<br />

weckte die seelische Abwehr der sich bedroht fühlenden Menschheit, wie auch den Drang, diese Kraftquelle für friedliche<br />

Zwecke zu verwenden, sie im ökonomischen Bereich nutzbar zu machen. Schon heute steht offensichtlich in der Atomenergie<br />

eine wertvolle Ergänzung des Energiepotentials der Welt bereit, die neben die klassischen Energiequellen tritt.<br />

die atomwirtschaft<br />

Jahrgang I<br />

Nr. 1<br />

Januar 1956<br />

Eine wachsende Zahl von Unternehmen der verschiedenartigsten<br />

Wirtschaftskreise braucht eine fortlaufende Unterrichtung<br />

über die Aussichten bei der Nutzung der Atomkraft:<br />

die chemische Industrie, die Elektroindustrie, die<br />

Energiewirtschaft, die Industrie der Meßgeräte und alle<br />

Zweige des Maschinenbaus, die von der Erzgewinnung bis<br />

zum Reaktorenbau an dieser neuen Entwicklung beteiligt<br />

sind. Hinzu treten alle Unternehmen und Fachleute, die<br />

sich mit dem Einsatz von Isotopen beschäftigen. Während<br />

die wissenschaftliche Literatur für die Kernphysik und die<br />

ihr verwandten Gebiete in ausreichendem Maße verfügbar<br />

ist, fehlt es an einer systematischen Bearbeitung der neu<br />

auftretenden wirtschaftlichen Probleme. Dabei erscheint<br />

eine Aufsplitterung der Nachrichtengebung in die verschiedensten<br />

Fachzeitschriften unrationell.<br />

Die vorliegende Zeitschrift will in sachlicher Klarheit<br />

umfassend über alle wirtschaftlichen Fragen der Kernumwandlung<br />

berichten. Wissenschaftliche und verfahrenstechnische<br />

Themen gehören nur insoweit zu ihrem Programm,<br />

als sie zum Verständnis der wirtschaftlichen Fragen<br />

unerläßlich sind. Die Unterrichtung wird umfassend<br />

und konzentriert sein und sich von der Behandlung der<br />

wirtschaftlichen Zusammenhänge einschließlich der<br />

Nachrichtengebung bis zu den Fragen der Rechtsordnung<br />

und der betrieblichen wie sozialen Sicherheit erstrecken.<br />

Unter Verwertung der redaktionellen Erfahrungen des<br />

Verlages wird die Zeitschrift eine Konzentration und damit<br />

eine Rationalisierung des Lesestoffes bringen. Insbesondere<br />

ihre Dokumentation, die gesichtet und zuverlässig ein<br />

Bild des Geschehens in Deutschland und in den wichtigsten<br />

Ländern der Welt gibt, wird den Leser schnell und<br />

knapp in verständlicher Sprache unterrichten.<br />

So soll DIE ATOMWIRTSCHAFT der ernsthaften und vor<br />

allem konzentrierten Berichterstattung dienen und über<br />

das deutsche Sprachgebiet hinaus ein gewissenhafter Berater<br />

auf einem neuen, zukunftsreichen Arbeitsfeld von<br />

Wirtschaft und Technik sein.<br />

Die Herausgeber<br />

Siegfried Balke, Heinrich Freiberger, Karl Hecht, W. Alexander Menne,<br />

Herbert Seidl und Kurt Sauerwein<br />

60 th year <strong>atw</strong><br />

Foreword ı Siegfried Balke, Heinrich Freiberger, Karl Hecht, W. Alexander Menne, Herbert Seidl and Kurt Sauerwein


<strong>atw</strong> Vol. 60 (<strong>2<strong>01</strong>5</strong>) | Issue 1 ı January<br />

The Federal Republic of Germany and<br />

the International Cooperation<br />

in the Nuclear Field<br />

Franz Josef Strauß<br />

The questions of international cooperation in the field of nuclear energy for peaceful purposes arise the increasing<br />

interest of all political and economic interested parties of our nation. This rising sympathy reflects the awareness,<br />

that due to the fast development of nuclear energy, in detail a hardly assessable process, a new technical revolution<br />

is in the offing which for the further economic development of the European states and not least our country itself<br />

will be in view of the current inferior position in comparison to the leading nuclear powers, of paramount importance.<br />

By all necessity of catching up the scientific and technical development at national level, the conviction is more<br />

and more confirmed that joint efforts both in the European and global area are necessary to make full use of the tremendous<br />

possibilities of nuclear energy for peaceful progress.<br />

60 TH YEAR ATW 51<br />

It is appropriate and valuable, already for determining<br />

the own point of view for the further participation in international<br />

cooperation within the nuclear field, to gain<br />

from time to time an overview and to take stock on existing<br />

organisation as well as different projects and plans.<br />

For this purpose the following lines are intended, without<br />

demanding completeness in all details. I may initially pay<br />

attention to the entirely or predominant economic committees<br />

for cooperation followed by bilateral and multilateral<br />

facts and projects.<br />

Scientific organisations<br />

1. CERN<br />

On 1 July 1953, in a purely scientific field, with little attention<br />

paid by the public, twelve west and southern<br />

European countries, amongst them the Federal Republic<br />

of Germany, joint together in Paris the so-called “European<br />

Organization for Nuclear Research“ (CERN). The organisation<br />

especially wants to serve basic research. For<br />

this purpose she built an international laboratory for research<br />

in the field of highly accelerated particles including<br />

cosmic radiation in Meyrin Geneva. The laboratory<br />

comprises apart from its respective buildings, equipment<br />

etc. a synchrocyclotron with a proton acceleration capacity<br />

of approx. 600 billion electron volts, which currently<br />

is being constructed.<br />

In addition, the construction of a high performance<br />

proton synchrotron is planned, which should be commissioned<br />

in 1960. Beside the construction and operation of<br />

these installations, CERN wants to serve international scientific<br />

cooperation in the nuclear field through the exchange<br />

of scientists, training of researchers, dissemination<br />

of information and cooperation with national research<br />

institutions. In order to throw light on the activities<br />

of CERN at a practical example, it shall be indicated,<br />

that a symposium about high-energy physics will take<br />

place in Geneva in June this year, to which approximately<br />

200 nuclear scientists from different countries, among<br />

them as well leading German experts, will attend.<br />

Besides a representation within the organisation of<br />

CERN and an objective and personal participation<br />

through constant transfer of researchers as well as financing<br />

the organisation, the Federal Republic of Germany is<br />

behind Great Britain and France in third place. At present<br />

she bears approximately 18 % of the overall costs. The<br />

contribution scheme of each member will be determined<br />

as of 1957 based on the net public income.<br />

2. European Atomic Energy Society<br />

The “European Atomic Energy Society“ (Europäische Atomenergie-Gesellschaft)<br />

serves research as well as the practical<br />

use and utilization of nuclear energy for friendly<br />

purposes. She was established on 15 June 1954. Currently<br />

besides the Federal Republic of Germany, who<br />

joint the society in February 1956, countries such as<br />

Great Britain, France, Italy, Belgium, Sweden, Norway,<br />

the Netherlands and Switzerland belong to her.<br />

The member states are represented by their supreme<br />

national atomic energy agencies. The society’s object is<br />

especially in the context of the loose merger of a scientific<br />

union the exchange and dissemination of scientific information,<br />

the standardisation of technical terms, the<br />

promotion of safety measures for the population, the<br />

publication of scientific papers and as far as possible the<br />

publication of an international journal with regards to<br />

nuclear science.<br />

She especially defines her duty in the promotion of direct<br />

exchange of ideas between scientists, and engineers<br />

through regular conferences and meetings in different<br />

member states. As an example for the work of the society<br />

the recent conference of rector scientists and practitioner<br />

in Naples should be pointed out, to which also decisive<br />

German personalities in this area were represented. Furthermore<br />

this year, symposiums with regards to questions<br />

of disposal of nuclear waste, the chemical processing of<br />

enriched fuels as well as metallurgical issues and theoretical<br />

nuclear physics are intended.<br />

The Federal Ministry for Nuclear Affairs tries to delegate<br />

on a regular basis all respective experts from the field<br />

of science, economy as well as from the ministry itself to<br />

the conventions of those institutions, which achieved and<br />

contributed with valuable results. Professor Heisenberg<br />

represents the Federal Republic of Germany within the<br />

permanent council, within the permanent working group<br />

she is represented by several members from different scientific<br />

areas. The chairmanship of the council holds the<br />

President of the British Atomic Energy Research Establishment,<br />

Sir John Cockcroit. A permanent financial contribution<br />

by all members is not intended. They burden their<br />

participations costs at the councils meetings and conventions<br />

themselves.<br />

English translation of<br />

the original text<br />

published in:<br />

die atomwirtschaft<br />

Vol. I<br />

Issue 6<br />

June 1956<br />

60 th year <strong>atw</strong><br />

The Federal Republic of Germany and the International Cooperation in the Nuclear Field ı Franz Josef Strauß


<strong>atw</strong> Vol. 60 (<strong>2<strong>01</strong>5</strong>) | Issue 1 ı January<br />

60 TH YEAR ATW 52<br />

Bilateral cooperation<br />

The agreement with the USA<br />

In the area of bilateral cooperation between the Federal<br />

Republic of Germany and other countries, up to now<br />

only the so-called standard agreement with the USA<br />

exists, which has been concluded in essentially similar<br />

form with altogether 30 states of the western world. The<br />

agreement concluded in February 1956 came into<br />

force on 23 April this year. It intends – only mentioning<br />

the relevant points – the leasing of at the most 6 kg<br />

Uranium-235 in an up at best 20 % enriched condition<br />

for the operation of research reactors in the Federal Republic<br />

of Germany.<br />

Delivered single fuel items need to be returned unchanged<br />

or exchanged for new delivered pieces after the<br />

machining operation. In addition, according to the agreement,<br />

contracting partners shall exchange each other on<br />

issues such as the planning, construction and operation<br />

of research reactors, health and safety problems with regards<br />

to operation and usage of such reactors as well as<br />

on the usage of radioactive isotopes within physical and<br />

biological research, medicine, agriculture and industry.<br />

The exchange of confidential information is not intended.<br />

According to the agreement and on the basis of special<br />

arrangements by the Federal Republic of Germany, the<br />

USA are allowed to sell or lease reactor materials which<br />

are necessary for the construction and operation of research<br />

reactors.<br />

The agreement provides different safety guarantees<br />

against the misuse of nuclear fuels or rather reactor materials<br />

for other purposes than agreed on. Thus among<br />

others representatives of the American Nuclear Committee<br />

are allowed upon request to observe the condition and<br />

usage of leased nuclear fuels as well as the efficiency of<br />

the reactor, for which they are being used. The agreement<br />

remains in force, subject to a mutual agreed extension,<br />

for a period of five years. The Federal Republic o Germany<br />

hopes that due to the standard agreement concluded<br />

with the USA first research reactors will be put to<br />

operation in the foreseeable future. Negotiations on the<br />

execution of the agreement and the purchase of research<br />

reactors in the USA should be completed shortly. It remains<br />

hope that beyond this standard agreement further<br />

agreement with the United States for the delivery of nuclear<br />

fuels, if possible also for the operation of nuclear<br />

power plants, can be concluded.<br />

Preliminary discussions with Great Britain about the<br />

conclusion of a British-German Nuclear agreement are<br />

currently on-going, about possibilities of further bilateral<br />

nuclear agreements with other states can not be concretely<br />

reported yet.<br />

Multilateral Projects<br />

1. International Atomic<br />

Energy Agency<br />

From the projects of multilateral cooperation in the nuclear<br />

field for peaceful purposes I would firstly like to emphasise<br />

on the international planning on establishing an<br />

International Atomic Energy Agency. After President Eisenhower<br />

presented at the UN General Assembly his plan<br />

“Atoms for Peace“ in December 1953, negotiations took<br />

place in the following period in the bosom of the UN concerning<br />

an International Atomic Energy Agency, which resulted<br />

very difficult due to the political differences<br />

between west and east.<br />

Now on 18 April this year, the draft of constitution for<br />

a future International Atomic Energy Agency was accepted<br />

by a conference to which Australia, Belgium, Brazil,<br />

France, Great Britain, India, Canada, Portugal, the Soviet<br />

Union, the South African Union, Czechoslovakia and the<br />

USA belong. The draft shall be discussed during a major<br />

conference in New York among all considered countries<br />

in September this year. It is expected, to lay down the<br />

statues during this conference in order to establish the<br />

International Atomic Energy Agency within the next<br />

years.<br />

The Federal Republic of Germany did not yet express<br />

an opinion on the recently received draft of the statute.<br />

She will, of course, be represented at the conference.<br />

The draft of statute concerns itself in comprehensive<br />

manner with the responsibilities and targets of the authority<br />

as well as with its executive bodies and their functions.<br />

Only the main points can be pointed out here<br />

broadly. The authority should in particular be responsible<br />

to promote and support to the greatest extend possible<br />

research and development of nuclear energy and its usage<br />

for peaceful purposes in all member states. For this<br />

purpose she shall be authorised to seize all necessary<br />

measures to fulfil these targets and to build all required<br />

institutions and plants.<br />

In particular she shall take care of the availability of<br />

necessary nuclear material required for research and its<br />

practical usage, support the exchange of scientific and<br />

technical information as well as support the exchange of<br />

scientists and experts, provide safety measures against<br />

the misuse of nuclear fuel for other than friendly purpose<br />

and supervise the adherence to these measures as well as<br />

to elaborate regulations for employment and population<br />

protection and to guarantee obedience to these regulations.<br />

Members of the Agency should be all member states of<br />

the United Nations and its affiliate organisations, which<br />

sign the final statute within a certain period. Due to its<br />

membership at the UNESCO, the Federal Republic of Germany<br />

already has access to the International Atomic Energy<br />

Agency.<br />

A General Conference, a Board of Governers and a department<br />

with an executive director and respective civil<br />

service are intended for the executive bodies of the<br />

Agency. The General Conference, which consists of a representative<br />

of each member state, takes decision by<br />

simple majority. She has among other things the right to<br />

decide on the budget and is able to provide recommendations<br />

to the Board of Governers with respect to all atomic<br />

authority related questions. Besides she also decides on<br />

approval and suspension of members. The Board of Governers<br />

should consist of 23 members.<br />

Five members are the leading nuclear powers (USA,<br />

the Soviet Union, Great Britain, France and Canada), five<br />

seats are allocated to the representatives of specific regional<br />

groups (e.g. Latin America, southern Asia, Pacific<br />

regions); 2 members are producers of source materials<br />

(Belgium, Poland, Czechoslovakia, Portugal), whereas<br />

both seats should alternate on a yearly basis between east<br />

and west; 1 seat is allocated for countries which can only<br />

provide technical knowledge. The General Conference<br />

shall elect at least ten further members of the Board of<br />

Governers from countries that are neither nuclear powers<br />

nor provide raw material or nuclear material or technical<br />

knowledge.<br />

60 th year <strong>atw</strong><br />

The Federal Republic of Germany and the International Cooperation in the Nuclear Field ı Franz Josef Strauß


<strong>atw</strong> Vol. 60 (<strong>2<strong>01</strong>5</strong>) | Issue 1 ı January<br />

The relation between the International Atomic Energy<br />

Agency and the UN has been for a long time subject of intense<br />

political controversy. According to the draft of<br />

statue, the agency shall report to the UN General Assembly<br />

and “when appropriate” to the Security Council.<br />

Future relations between the Agency and the UN shall be<br />

guaranteed in conjunction with the UN General Assembly<br />

along with the General Conference of the agency. In practice<br />

it is regulated that the agency is an independent organisation<br />

from the UN, which nevertheless is responsible<br />

to inform the UN about her activities. With regards to<br />

the position of the Agency towards its members it needs<br />

to be highlighted, that the member state sovereignty<br />

needs to be considered.<br />

2. The OEEC-Project<br />

The Council of Ministers of the seventeen OEEC-member<br />

states decided within a meeting on 29 February 1956<br />

with the participation of representatives from the USA<br />

and Canada, to appoint a selected committee for nuclear<br />

energy, which should rework within three month the<br />

report of the working party No. 10, in order to create a<br />

fundament for a concrete and speedy cooperation of<br />

OEEC- members in the nuclear field of nuclear field. Due<br />

to the details of the report No. 10, of the so-called OEECplan,<br />

it can be referred to – even to avoid repetitions –<br />

the report in February 1956 issue no. 2 of the “Atomwirtschaft”.<br />

The selected committee appointed four task<br />

forces for the performance of its tasks. One team for<br />

common enterprises, one for security control, one for<br />

the adaptation of legislation and one for the training of<br />

specialists.<br />

The task force for “common enterprises” is responsible<br />

to evaluate technical and other requirements for the construction<br />

of a joint isotope separation plant for uranium,<br />

a chemical plant for processing enriched fuels, a plant for<br />

the production of heavy water and common operation of<br />

experimental reactors. The task force for “security matters”<br />

should elaborate recommendations for the special<br />

committee of a control system within the OEEC-countries<br />

for preventing misuse of source material and nuclear<br />

fuels, especially for military purposes.<br />

The task force for “the adaptation of legislation” is responsible<br />

to ascertain the possibility to harmonise national<br />

atomic legislations with related legislations (e.g.<br />

mining codes, standards for employment and population<br />

protection) and the task force for “training of specialists”<br />

shall evaluate the current situation of the training sector<br />

of each single member state and thus highlight ways to<br />

overcome the significant lack of well trained specialists<br />

within the nuclear field (scientists and engineers).<br />

Besides the actual task forces of the special committee<br />

on nuclear energy, a mixed group together with the<br />

OEEC-Board of Governers “Committee on trade“ elaborates<br />

the possibilities and requirements for an economic<br />

and custom policy moratorium and the following establishment<br />

of a nuclear common market of the OEEC-countries.<br />

The moratorium shall prevent obstacles, which<br />

could stand in the way for the future liberalisation on<br />

trade of source material, nuclear fuels as well as of nuclear<br />

equipment.<br />

A subgroup of the OEEC-committee responsible for insurance<br />

questions gives attention to the extremely complex<br />

and difficult questions of insurance against nuclear<br />

risks and a far-reaching adaptation of the required national<br />

laws. The work of these committees is now near<br />

completion. The soon expected reports will be part of the<br />

agenda during the concluding meeting on 23 until 30<br />

June of the special committee on nuclear energy.<br />

The special committee will deal especially with the<br />

question of establishing a steering committee on nuclear<br />

energy its constitution and responsibilities as well as with<br />

questions on cooperation with the USA and with all other<br />

supranational institution or rather activities. It is expected<br />

to present its final report with recommendations on a<br />

practical definition of the cooperation of the seventeen<br />

OEEC-member states to the Council of Ministers on 17<br />

July. Even if it is not possible to provide at present any<br />

precise forecasts, it can be nevertheless expected that the<br />

decisions of the Ministerial Council will bring the plans<br />

for cooperation in the nuclear field within the OEEC<br />

closer to its realisation.<br />

The Federal Republic is present in all mentioned committees<br />

and groups and promotes their activities best possible.<br />

She has always emphasized and proved its willingness<br />

to collaborate on both OEEC and EURATOM-level. I<br />

nevertheless consider a non-existent or only little coordinated<br />

cooperation of both projects and even a kind of<br />

„competition“ between both as incorrect. Certain coordination<br />

already arises due to the fact that all six coals<br />

and steel countries are at the same time OEEC-members.<br />

Moreover, it seems attractive to me, to entrust a special<br />

committee with the responsibility to adapt both plans to<br />

one another as far as possible, wherever it seems appropriate<br />

– e.g. at certain common companies, in terms of<br />

security check.<br />

3. EURATOM<br />

A task force appointed by the government committee in<br />

Brussels chaired by L.M. Armand (France) presented a detailed<br />

report with a plan for cooperation in the nuclear<br />

field on the level of the six member states of the European<br />

Coal and Steel Community in November 1955(so-called<br />

EURATOM-plan). Due to its history and details of this<br />

plan it can again be referred to the detailed report in February<br />

1956 issue no. 2 “Atomwirtschaft” p.1 ff.<br />

The government committee in Brussels reworked the<br />

Armand-report subsequently. On April 1956 the government<br />

committee now presented the “Report of the Heads<br />

of Delegation to the Foreign Ministers”. Beside of very<br />

extensive explanations about the establishment of a general<br />

European common market it contains also recommendations<br />

for the structure of EURATOM within its<br />

second main part. The report ties in to a large extend to<br />

the Armand-report but deviates from it – in a general liberal<br />

tendency – not insignificantly in certain points. In<br />

what follows only the most important aspects will be<br />

mentioned.<br />

The report strongly underlines, that EURATOM shall<br />

be open to all European states, which accept the community<br />

rules. The establishment of a close liaison with<br />

Great Britain should be further attempted in any event.<br />

The report also noticed, that the EURATOM and OEECplan<br />

do not show any contradictions but rather complete<br />

and support each other.<br />

Within the field of research it is explicitly noticed, that<br />

besides the recommendation for common research activities<br />

in the context of EURATOM the major part of the research<br />

results should be still carried out by public or<br />

private research bodies within the member states. Research<br />

cannot be planned. A centralisation of research<br />

seems principally flawed.<br />

60 TH YEAR ATW 53<br />

60 th year <strong>atw</strong><br />

The Federal Republic of Germany and the International Cooperation in the Nuclear Field ı Franz Josef Strauß


<strong>atw</strong> Vol. 60 (<strong>2<strong>01</strong>5</strong>) | Issue 1 ı January<br />

60 TH YEAR ATW 54<br />

On the question of law of inventions, private property<br />

and private initiative is generally recognised. In exceptional<br />

cases, however, which cannot be discussed in detail<br />

at this point, the possibility of non-exclusive compulsory<br />

licenses on full compensation are intended. All decision if<br />

challenged shall be reviewed by court.<br />

In the field of labour and population protection the report<br />

regards an elaboration of binding minimum standards<br />

for the members of the community as necessary. The<br />

respective control of plants, which machine and process<br />

fuel material is essentially considered. However, the periodical<br />

monitoring of the safety requirements, should be<br />

left to the member states with a certain right of control by<br />

the community.<br />

The major part of investments in the nuclear field<br />

should remain within the responsibility of the public and<br />

private sector in the member states in the same way as<br />

research carried out by the EURATOM should only represent<br />

a supplement to the entire research work. The initiative<br />

of enterprises should be supported by illustrative programs,<br />

the dissemination of research results and if necessary<br />

financial assistance.<br />

Even if the development projects in the nuclear field<br />

shall be forwarded to the commission for a statement, the<br />

report also underlines, that the organisation should<br />

neither possess the right of investment decisions nor the<br />

right to comment on their economic justification or on<br />

the facilities location.<br />

The recommendation about the supply of source material<br />

and fuels within the report seems of special economic<br />

and political importance. In this respect a purchase<br />

priority by EURATOM is planned, which shall provide<br />

these materials in standardised and non-discriminating<br />

conditions to consumers. An exception takes merely place<br />

if the organisation declares not being able to deliver. An<br />

ownership monopoly is not recommended. Under certain<br />

conditions, in case of strongly enriched nuclear fuels,<br />

only a leasing form of commodities is intended.<br />

In order to guarantee prevention of misuse of ores and<br />

nuclear fuels, the report recommends far-reaching control<br />

and in particular the return of nuclear fuels to t he<br />

community bodies at the end of a conversion process.<br />

The report states an immediate establishment of a<br />

nuclear common market that later on shall give way to a<br />

general common market.<br />

In order to accomplish all responsibilities of EURATOM,<br />

a European Atomic Energy Commission with its own power<br />

and common mandate as permanent body for the on-going<br />

management of the community was recommended.<br />

Certain committees shall support the European Atomic<br />

Energy Commission in order to achieve her tasks e.g. an<br />

expert’ forum for science and economy and a mixed committee<br />

of producers and consumers. In order to perform<br />

its functions towards common institutions, an administrative<br />

unit for the industrial administration and an<br />

agency for special coverage obligations with a commercial<br />

management should be established. The complete<br />

report by the head of delegation is – as it needs to be emphasized,<br />

an expert report dedicated to governments. But<br />

at the same time the report is not binding. Thus suggestions<br />

by the participating governments in all detailed<br />

questions are subjected to alternations.<br />

During the conference of the Foreign Ministers of the<br />

European Coal and Steel countries from 29 to 30 May in<br />

Venice, the ministers agreed on using the report as basis<br />

for an intergovernmental conference, which is convened<br />

on 26 June in Brussels. This conference shall elaborate<br />

necessary individual contracts for the establishment of a<br />

common European market and by EURATOM into a whole<br />

comprehensive treaty.<br />

Two questions of high political importance, however,<br />

were reserved for a special consultation. This concerns in<br />

this respect the inclusion of overseas territories into the<br />

treaty placed for discussion by France and the question of<br />

the military usage of nuclear energy. It is obvious, that<br />

especially problems, which result from military use of<br />

one or more member states in the nuclear field, have significant<br />

influence on the cooperation development in the<br />

field of research and usage of nuclear energy for peaceful<br />

purposes.<br />

In this context it is necessary to remind, that the Federal<br />

Republic of Germany refused within the Paris Treaty<br />

the production of nuclear arms. After all it is necessary to<br />

point out the welcoming decision by the conference in<br />

Venice, at which the Belgian Foreign Minister Spaak was<br />

appointed to inform allied European countries as well as<br />

European organisations about the activities of the upcoming<br />

intergovernmental conference and to explicitly<br />

invite them for a participation in efforts of the six<br />

countries.<br />

Author<br />

Franz Josef Strauß<br />

Federal Minister of Germany for Nuclear Affairs<br />

60 th year <strong>atw</strong><br />

The Federal Republic of Germany and the International Cooperation in the Nuclear Field ı Franz Josef Strauß


<strong>atw</strong> Vol. 60 (<strong>2<strong>01</strong>5</strong>) | Issue 1 ı January<br />

Die Bundesrepublik und die<br />

internationale Zusammenarbeit<br />

auf dem Kernenergiegebiet<br />

Franz Josef Strauß<br />

Den Fragen internationaler Zusammenarbeit auf dem Gebiete der Kernenergie für friedliche Zwecke wendet sich in<br />

steigendem Maße das Interesse aller politisch und wirtschaftlich interessierten Kreise unseres Volkes zu. Diese wachsende<br />

Anteilnahme entspricht der Erkenntnis, daß sich durch die Entwicklung der Kernenergie in raschem, im einzelnen<br />

kaum übersehbarem Ablauf eine neue technische Revolution anbahnt, die für die weitere wirtschaftliche Entwicklung<br />

der europäischen Staaten und dabei nicht zuletzt unseres Vaterlandes angesichts des augenblicklichen Rückstandes<br />

gegenüber den führenden Atommächten von ausschlaggebender Bedeutung sein wird.<br />

60 TH YEAR ATW 55<br />

Immer mehr vertieft sich auch die Überzeugung, daß – bei<br />

aller Notwendigkeit, den Anschluß an die wissenschaftliche<br />

und technische Entwicklung im nationalen Bereich<br />

weitmöglichst zu gewinnen – sowohl im europäischen als<br />

auch im weltweiten Raum gemeinsame Anstrengungen<br />

notwendig sind, um die ungeheueren Möglichkeiten der<br />

Kernenergie für den friedlichen Fortschritt voll auszuschöpfen.<br />

Es ist, schon um den eigenen Standpunkt für die weitere<br />

Beteiligung an der internationalen Zusammenarbeit auf<br />

dem Kernenergiegebiet festzulegen, zweckmäßig und<br />

wertvoll, von Zeit zu Zeit einen Überblick über die bestehenden<br />

Einrichtungen sowie die verschiedenen Vorhaben<br />

und Pläne zu gewinnen und eine gewisse Zwischenbilanz<br />

zu ziehen. Diesem Zwecke sollen, ohne Anspruch auf Vollständigkeit<br />

in allen Einzelheiten zu erheben, die nachstehenden<br />

Zeilen dienen. Ich darf dabei zunächst auf die ganz<br />

oder überwiegend wissenschaftlichen Gremien der Zusammenarbeit<br />

und sodann auf die bilateralen und multilateralen<br />

Gegebenheiten und Vorhaben eingehen.<br />

Organisationen der Wissenschaft<br />

1. CERN<br />

Auf rein wissenschaftlichem Gebiet haben sich, in der Öffentlichkeit<br />

wenig beachtet, am 1. Juli 1953 in Paris zwölf<br />

west- und südeuropäische Staaten, darunter die Bundesrepublik,<br />

zur sogenannten „Europäischen Organisation für<br />

Kernphysikalische Forschung” (CERN) zusammengeschlossen.<br />

Die Organisation will insbesondere der Grundlagenforschung<br />

dienen. Sie errichtet zu diesem Zweck in Meyrin<br />

bei Genf ein internationales Laboratorium für Forschungen<br />

auf dem Gebiete hochbeschleunigter Teilchen einschließlich<br />

der kosmischen Strahlung. Das Laboratorium<br />

wird neben den entsprechenden Gebäuden, Gerätschaften<br />

usw. ein Synchrozyklotron mit einem Protonen-Beschleunigungsvermögen<br />

von etwa 600 Mill. Elektronenvolt umfassen,<br />

das bereits im Bau ist. Daneben ist die Errichtung<br />

eines Protonen-Synchrotrons von großer Leistungsstärke<br />

geplant, das 1960 in Betrieb genommen werden soll. Neben<br />

der Errichtung und dem Betrieb dieser Anlagen will<br />

die CERN der internationalen wissenschaftlichen Zusammenarbeit<br />

auf dem Kernenergiegebiet durch Austausch<br />

von Wissenschaftlern, Ausbildung von Forschern, Verbreitung<br />

von Informationen und Zusammenarbeit mit nationalen<br />

Forschungseinrichtungen dienen. Um die Aktivität<br />

der CERN an einem praktischen Beispiel zu beleuchten,<br />

darf darauf hingewiesen werden, daß im Juni dieses Jahres<br />

in Genf ein Symposion über Hochenergiephysik stattfindet,<br />

an dem etwa 200 Kernwissenschaftler aus verschiedenen<br />

Ländern, darunter auch führende deutsche Gelehrte,<br />

teilnehmen.<br />

Die Bundesrepublik steht, neben einer Vertretung in<br />

den Organen der CERN und einer sachlichen und persönlichen<br />

Beteiligung durch ständige Abordnung von Forschern,<br />

auch in der Finanzierung der Organisation hinter<br />

Großbritannien und Frankreich an dritter Stelle. Sie trägt<br />

gegenwärtig etwa 18 % der Kosten. Der Beteiligungsschlüssel<br />

der einzelnen Mitglieder wird ab 1957 auf der Grundlage<br />

des Nettovolkseinkommens neu festgelegt werden.<br />

2. Europäische<br />

Atomenergie-Gesellschaft<br />

Sowohl der Forschung als auch der praktischen Verwertung<br />

und Nutzbarmachung der Kernenergie für friedliche<br />

Zwecke dient die „Europäische Atomenergie-Gesellschaft“<br />

(European Atomic Energy Society). Sie ist am 15. Juni 1954<br />

gegründet worden. Gegenwärtig gehören ihr neben der<br />

Bundesrepublik Deutschland, die im Februar 1956 beigetreten<br />

ist, die Länder Großbritannien, Frankreich, Italien,<br />

Belgien, Schweden, Norwegen, die Niederlande und die<br />

Schweiz an. Die Mitgliedsländer sind durchweg durch ihre<br />

obersten nationalen Atombehörden vertreten. Die Gesellschaft<br />

bezweckt im Rahmen des lockeren Zusammenschlusses<br />

einer wissenschaftlichen Vereinigung insbesondere<br />

den Austausch und die Verbreitung von Informationen<br />

wissenschaftlicher Art, die Vereinheitlichung von<br />

Fachbegriffen, die Förderung von Schutzmaßnahmen für<br />

die Bevölkerung, die Publizierung wissenschaftlicher Werke<br />

und nach Möglichkeit die Herausgabe einer internationalen<br />

kernwissenschaftlichen Zeitschrift. Vor allem sieht<br />

sie ihre Aufgabe in der Förderung des unmittelbaren Gedankenaustausches<br />

von Wissenschaftlern und Technikern<br />

durch regelmäßige Tagungen und Zusammenkünfte in<br />

den verschiedenen Mitgliedsländern. Als Beispiel für die<br />

Arbeit der Gesellschaft sei auf die kürzliche Konferenz von<br />

Reaktor-Wissenschaftlern und -Praktikern in Neapel hingewiesen,<br />

bei der auch maßgebliche deutsche Persönlichkeiten<br />

auf diesem Sachgebiet vertreten waren. Ferner sind<br />

für dieses Jahr Symposien über Fragen der Beseitigung von<br />

Atomabfall, der chemischen Aufbereitung angereicherter<br />

Brennstoffe, metallurgische Fragen und theoretische Kernphysik<br />

vorgesehen.<br />

Das Bundesministerium für Atomfragen ist bemüht, zu<br />

den Tagungen der Gesellschaft, die bisher wertvolle Ergebnisse<br />

erzielt haben, regelmäßig die entsprechenden<br />

die atomwirtschaft<br />

Vol. I<br />

Ausgabe 6<br />

Juni 1956<br />

60 th year <strong>atw</strong><br />

The Federal Republic of Germany and the International Cooperation in the Nuclear Field ı Franz Josef Strauß


<strong>atw</strong> Vol. 60 (<strong>2<strong>01</strong>5</strong>) | Issue 1 ı January<br />

60 TH YEAR ATW 56<br />

Sachverständigen aus Wissenschaft und Wirtschaft sowie<br />

aus dem Ministerium selbst zu delegieren. Im ständigen<br />

Rat der Gesellschaft (Council) ist die Bundesrepublik durch<br />

Professor Heisenberg, im ständigen Arbeitsausschuß (Working<br />

Group) durch mehrere Mitglieder für verschiedene<br />

wissenschaftliche Sachgebiete vertreten. Den Vorsitz der<br />

Gesellschaft hat der Präsident des British Atomic Energy<br />

Research Establishment, Sir John Cockcroit. Eine ständige<br />

finanzielle Beteiligung der Mitglieder ist nicht vorgesehen;<br />

diese tragen vielmehr die Kosten ihrer Teilnahme an den<br />

Sitzungen und Tagungen der Gesellschaft selbst.<br />

Bilaterale Zusammenarbeit<br />

Der Vertrag mit den USA<br />

Auf dem Gebiet bilateraler Zusammenarbeit zwischen der<br />

Bundesrepublik und anderen Staaten ist bisher lediglich<br />

das sog. Standardabkommen mit den USA zu verzeichnen,<br />

das von diesen bisher mit insgesamt 30 Staaten der westlichen<br />

Welt im wesentlichen in gleicher Form abgeschlossen<br />

worden ist. Das im Februar 1956 unterzeichnete Abkommen<br />

ist am 23. April dieses Jahres in Kraft getreten. Es sieht<br />

– um nur die wesentlichsten Punkte anzusprechen – die<br />

Verpachtung von im Höchstfall 6 kg Uran-235 in einem bis<br />

zu höchstens 20 % angereicherten Zustand zum Betrieb<br />

von Forschungsreaktoren in der Bundesrepublik vor. Die<br />

gelieferten Brennstoffeinzelstücke müssen nach dem Bearbeitungsvorgang<br />

unverändert zurückgegeben bzw. gegen<br />

andere, neu zu liefernde Stücke ausgetauscht werden. Daneben<br />

sollen nach dem Abkommen die Vertragspartner gegenseitig<br />

Informationen über Planung, Bau und Betrieb<br />

von Forschungsreaktoren, über die Probleme von Gesundheit<br />

und Sicherheit im Zusammenhang mit dem Betrieb<br />

und der Benutzung solcher Reaktoren sowie über die Verwendung<br />

radioaktiver Isotope in der physikalischen und<br />

biologischen Forschung, in der Medizin, Landwirtschaft<br />

und Industrie austauschen. Ein Austausch von Geheiminformationen<br />

ist nicht vorgesehen. Nach dem Abkommen<br />

können auf Grund besonderer Vereinbarungen der Bundesrepublik<br />

Reaktormaterialien, die für den Bau und den Betrieb<br />

von Forschungsreaktoren erforderlich sind, durch die<br />

USA verkauft oder verpachtet werden. Das Abkommen<br />

sieht verschiedene Sicherheitsgarantien gegen den Mißbrauch<br />

des Kernbrennstoffes bzw. des Reaktormaterials zu<br />

anderen als mit dem Abkommen beabsichtigten Zwecken<br />

vor. So muß u.a. Vertretern der Atomkommission der Vereinigten<br />

Staaten auf Verlangen gestattet werden, Zustand<br />

und Verwendung des verpachteten Kernbrennstoffes sowie<br />

die Leistung des Reaktors, in dem er verwendet wird, zu<br />

beobachten. Das Abkommen bleibt vorbehaltlich einer gegenseitig<br />

zu vereinbarenden Verlängerung für fünf Jahre in<br />

Kraft. Die Bundesregierung hofft, daß auf Grund des Standardabkommens<br />

mit den USA die ersten Forschungsreaktoren<br />

in absehbarer Zeit in Betrieb genommen werden können.<br />

Verhandlungen über die Ausführung des Abkommens<br />

und den Kauf von Forschungsreaktoren in den USA stehen<br />

vor dem Abschluß. Es besteht die Hoffnung, daß über dieses<br />

erste Standardabkommen hinaus weitere Abkommen<br />

mit den Vereinigten Staaten zur Lieferung von Kernbrennstoffen,<br />

nach Möglichkeit auch zum Betriebe von Kraftreaktoren,<br />

abgeschlossen werden können.<br />

Mit Großbritannien sind bereits Vorbesprechungen<br />

über den Abschluß eines britisch-deutschen Atomabkommens<br />

im Gange, über sonstige Möglichkeiten für bilaterale<br />

Atomabkommen mit anderen Staaten läßt sich gegenwärtig<br />

noch nichts Konkretes berichten.<br />

Multilaterale Vorhaben<br />

1. Die Internationale Atomagentur<br />

Von den multilateralen Vorhaben einer Zusammenarbeit<br />

auf dem Kernenergiegebiet zu friedlichen Zwecken möchte<br />

ich zunächst auf die weltweite Planung der Errichtung<br />

einer Internationalen Atomagentur eingehen. Nachdem<br />

im Dezember 1953 Präsident Eisenhower der Vollversammlung<br />

der UN seinen Plan „Atoms for Peace“ vorgelegt hatte,<br />

fanden in der Folgezeit im Schöße der UN Verhandlungen<br />

über eine weltweite Atomenergiebehörde statt, die sich<br />

nicht zuletzt wegen der politischen Gegensätze zwischen<br />

West und Ost sehr schwierig gestalteten. Nunmehr ist jedoch<br />

am 18. April dieses Jahres durch eine Konferenz, der<br />

Australien, Belgien, Brasilien, Frankreich, Großbritannien,<br />

Indien, Kanada, Portugal, Sowjetunion, Südafrikanische<br />

Union, Tschechoslowakei und die USA angehören,<br />

der Entwurf einer Satzung für die künftige Internationale<br />

Atomagentur (International Atomic Energy Agency) angenommen<br />

worden. Er soll noch im September dieses Jahres<br />

in New York auf einer großen Konferenz aller in Betracht<br />

kommenden Mitglieder beraten werden. Man hofft, in dieser<br />

Konferenz die Statuten endgültig festlegen zu können,<br />

um so schon im nächsten Jahre die Internationale Atomagentur<br />

aufbauen zu können.<br />

Die Bundesregierung hat zu dem erst kürzlich zugegangenen<br />

Satzungsentwurf noch nicht Stellung genommen. Sie<br />

wird selbstverständlich auf der Konferenz vertreten sein.<br />

Der Satzungsentwurf befaßt sich in sehr umfassender<br />

Form mit den Aufgaben und Zielen der Behörde sowie ihren<br />

Organen und deren Funktionen. Es kann hier nur in<br />

großen Zügen auf die wichtigsten Gesichtspunkte hingewiesen<br />

werden. Die Behörde soll vor allem die Aufgabe haben,<br />

die Erforschung und Entwicklung der Atomenergie<br />

und ihre Nutzung zu friedlichen Zwecken in allen Mitgliedsstaaten<br />

weitmöglichst zu fördern und zu unterstützen.<br />

Zu diesem Zwecke soll sie befugt sein, alle für die Erreichung<br />

dieses Zieles notwendigen Maßnahmen zu ergreifen<br />

und die erforderlichen Institutionen und Anlagen zu<br />

errichten. Insbesondere soll sie für die Bereitstellung des<br />

für die Forschung und die praktische Verwertung notwendigen<br />

Kernmaterials sorgen, den Austausch wissenschaftlicher<br />

und technischer Informationen sowie von Wissenschaftlern<br />

und Fachleuten fördern, Schutzmaßnahmen gegen<br />

Mißbrauch der Kernbrennstoffe zu anderen als friedlichen<br />

Zwecken vorsehen und über ihre Einhaltung wachen<br />

sowie Vorschriften für Arbeits- und Bevölkerungsschutz<br />

ausarbeiten und ihre Beachtung sicherstellen.<br />

Mitglieder der Agentur sollen alle Mitgliedsstaaten der<br />

Vereinten Nationen und ihrer Tochterorganisationen sein,<br />

die innerhalb einer bestimmten Frist das endgültige Statut<br />

unterzeichnen. Die Bundesrepublik hat somit schon über<br />

ihre Mitgliedschaft in der UNESCO Zugang zur Internationalen<br />

Atomagentur.<br />

An Organen der Agentur ist eine Allgemeine Konferenz<br />

(General Conference), ein Direktorium (Board of Governers)<br />

und ein Stab mit einem Generaldirektor und einer<br />

entsprechenden Beamtenschaft vorgesehen. Die Allgemeine<br />

Konferenz, die sich aus je einem Vertreter aller Mitgliedsstaaten<br />

zusammensetzt, entscheidet mit einfacher<br />

Mehrheit. Sie hat u.a. das sog. Budgetrecht und kann in<br />

allen die Atombehörde betreffenden Fragen dem Direktorium<br />

Empfehlungen geben. Außerdem entscheidet sie<br />

über die Zulassung und Suspendierung von Mitgliedern.<br />

Das Direktorium soll sich aus 23 Mitgliedern zusammensetzen.<br />

5 Mitglieder sind die führenden Atommächte<br />

(USA, Sowjetunion, Großbritannien, Frankreich und<br />

60 th year <strong>atw</strong><br />

The Federal Republic of Germany and the International Cooperation in the Nuclear Field ı Franz Josef Strauß


<strong>atw</strong> Vol. 60 (<strong>2<strong>01</strong>5</strong>) | Issue 1 ı January<br />

Kanada); 5 Sitze gehen an Vertreter bestimmter regionaler<br />

Gruppen (z.B. Lateinamerika, Südasien, Pazifische Region);<br />

2 Mitglieder sind den Produzenten von Ausgangsstoffen<br />

zu entnehmen (Belgien, Polen, Tschechoslowakei, Portugal),<br />

wobei diese beiden Sitze alljährlich zwischen Ost<br />

und West abwechseln sollen; für die Länder, die im wesentlichen<br />

nur technische Kenntnisse zur Verfügung stellen<br />

können, ist 1 Sitz vorgesehen; schließlich sollen weitere<br />

10 Mitglieder des Direktoriums durch die Allgemeine<br />

Konferenz aus den Ländern gewählt werden, die weder<br />

Atommächte sind noch Grundstoffe oder Kernmaterial<br />

oder technische Kenntnisse zur Verfügung stellen können.<br />

Das Verhältnis der Internationalen Atomagentur zu den<br />

UN war lange Zeit Gegenstand heftiger politischer Kontroversen.<br />

Nach dem Satzungsentwurf ist nunmehr vorgesehen,<br />

daß die Agentur der Generalversammlung der UN<br />

und, „when appropriate”, dem Sicherheitsrat Bericht zu<br />

erstatten hat. Die künftigen Beziehungen zwischen der<br />

Agentur und den UN sollen im Zusammenwirken der Vollversammlung<br />

der UN mit der Allgemeinen Konferenz der<br />

Agentur gewährleistet werden. In der Praxis geht die Regelung<br />

dahin, daß die Agentur eine von der UN unabhängige<br />

Organisation ist, die allerdings die Verpflichtung übernimmt,<br />

die UN über ihre Tätigkeit zu unterrichten. Hinsichtlich<br />

der Stellung der Agentur gegenüber ihren Mitgliedern<br />

ist hervorzuheben, daß die Souveränität der Mitgliedsstaaten<br />

beachtet werden muß.<br />

2. Das OEEC-Projekt<br />

Der Ministerrat der 17 Mitgliedsstaaten der OEEC hat unter<br />

Beteiligung von Vertretern der USA und Kanadas in seiner<br />

Sitzung vom 29. Februar 1956 beschlossen, einen Sonderausschuß<br />

für Kernenergie einzusetzen, der möglichst<br />

innerhalb von drei Monaten den Bericht der Arbeitsgruppe<br />

Nr. 10 überarbeiten soll, um die Grundlage für eine baldige<br />

konkrete Zusammenarbeit der OEEC-Mitglieder auf dem<br />

Kernergiegebiet zu schaffen. Wegen der Einzelheiten des<br />

Berichts Nr. 10, des sog. OEEC-Planes, darf – schon um<br />

Wiederholungen zu vermeiden – auf die Ausführungen in<br />

Heft Nr. 2 der „Atomwirtschaft” vom Februar 1956, S. 1 ff.<br />

verwiesen werden. Der Sonderausschuß hat zur Erfüllung<br />

seiner Aufgaben vier Arbeitsgruppen eingesetzt, nämlich<br />

für gemeinschaftliche Unternehmen, Sicherheitskontrolle,<br />

Anpassung der Gesetzgebung und Ausbildung von Fachkräften.<br />

Die Arbeitsgruppe „gemeinschaftliche Unternehmen”<br />

hat den Auftrag, die technischen und sonstigen Voraussetzungen<br />

für die Errichtung einer gemeinsamen Isotopentrennungsanlage<br />

für Uran, einer chemischen Anlage<br />

zur Aufbereitung angereicherter Brennstoffe, einer Anlage<br />

zur Erzeugung von Schwerem Wasser und für den gemeinsamen<br />

Betrieb von Versuchsreaktoren zu prüfen. Die Arbeitsgruppe<br />

„Sicherheitsfragen” soll dem Sonderausschuß<br />

Vorschläge für ein Kontrollsystem innerhalb der OEEC-<br />

Länder zur Verhinderung des Mißbrauchs von Ausgangsstoffen<br />

und Kernbrennstoffen, insbes. für militärische<br />

Zwecke, unterbreiten. Die Arbeitsgruppe „Anpassung der<br />

Gesetzgebung” hat den Auftrag, die Möglichkeiten einer<br />

Harmonisierung der nationalen Atomgesetzgebungen und<br />

der verwandten Gesetzgebungen (z.B. Berggesetze, Normen<br />

für den Arbeits- und Bevölkerungsschutz) zu ergründen,<br />

und die Arbeitsgruppe „Ausbildung von Fachkräften”<br />

schließlich soll die derzeitige Lage in den einzelnen Mitgliedsländern<br />

auf dem Ausbildungssektor prüfen und Wege<br />

zur Überwindung des allenthalben für besonders<br />

schwerwiegend erachteten Mangels an ausgebildeten<br />

Fachkräften auf dem Kernenergiegebiet (von Wissenschaftlern<br />

und Technikern) aufzeigen. Neben diesen eigentlichen<br />

Arbeitsgruppen des Sonderausschusses für<br />

Kernenergie befaßt sich eine zusammen mit dem Handelsdirektorium<br />

der OEEC gebildete gemischte Gruppe „Ausschuß<br />

für Handelsfragen“ mit den Möglichkeiten und Voraussetzungen<br />

für ein wirtschafts- und zollpolitisches Stillhalteabkommen<br />

und die spätere Errichtung eines gemeinsamen<br />

Atommarktes der OEEC-Länder. Das Stillhalteabkommen<br />

soll die Aufrichtung von Hemmnissen verhindern,<br />

die einer späteren Liberalisierung des Handels mit Ausgangs-<br />

und Kernbrennstoffen sowie mit Atomausrüstungsgegenständen<br />

(equipment) entgegenstehen könnten. Eine<br />

Untergruppe des Ausschusses der OEEC für Versicherungsfragen<br />

befaßt sich mit den äußerst vielschichtigen und<br />

schwierigen Fragen der Versicherung gegen das Atomrisiko<br />

und einer weitmöglichen Anpassung der insoweit zu schaffenden<br />

nationalen Gesetze. Die Arbeiten all dieser Gremien<br />

stehen vor dem Abschluß. Die demnächst zu erwartenden<br />

Berichte werden Gegenstand der für den 28. bis 30. Juni angesetzten,<br />

voraussichtlich abschließenden Sitzung des Sonderausschusses<br />

für Kernenergie sein. Der Sonderausschuß<br />

wird sich außerdem insbesondere auch mit der Frage der<br />

Errichtung eines Direktoriums für Kernenergie (steering<br />

committee) und dessen Zusammensetzung und Zuständigkeiten<br />

sowie mit Fragen der Zusammenarbeit mit den USA<br />

und mit anderen übernationalen Institutionen bzw. Vorhaben<br />

zu befassen haben. Er wird seinen Abschlußbericht mit<br />

Vorschlägen für die praktische Ausgestaltung der Zusammenarbeit<br />

der 17 Mitgliedsstaaten der OEEC voraussichtlich<br />

am 17. Juli dem Ministerrat vorlegen. Wenn auch im<br />

gegenwärtigen Zeitpunkt noch keine genauen Prognosen<br />

gestellt werden können, so darf doch erwartet werden, daß<br />

die Beschlüsse des Ministerrats die Pläne für eine Zusammenarbeit<br />

auf dem Kernenergiegebiet innerhalb der OEEC<br />

der Verwirklichung ein gutes Stück näherbringen werden.<br />

Die Bundesrepublik ist in allen genannten Ausschüssen<br />

und Gruppen vertreten und fördert deren Arbeiten nach<br />

Kräften. Sie hat stets ihre Bereitschaft betont und in der<br />

Praxis bewiesen, sowohl auf der OEEC- als auch auf der<br />

EURATOM-Ebene mitzuarbeiten. Ich halte allerdings ein<br />

nicht oder nur wenig koordiniertes Nebeneinander der<br />

beiden Projekte oder gar eine Art „Wettlauf” zwischen ihnen<br />

für verfehlt. Eine gewisse Koordinierung ergibt sich<br />

zwar schon aus der Tatsache, daß die sechs Montanstaaten<br />

gleichzeitig Mitglieder der OEEC sind. Darüber hinaus<br />

aber scheint es mir wünschenswert, ein bestimmtes Gremium<br />

ausdrücklich mit der Aufgabe zu betrauen, die beiden<br />

Pläne dort, wo dies sinnvoll ist – z.B. bei gewissen gemeinschaftlichen<br />

Unternehmen, in der Frage der Sicherheitskontrolle<br />

– soweit wie möglich einander anzupassen.<br />

3. EURATOM<br />

Auf der Ebene der sechs Mitgliedsstaaten der Montanunion<br />

hat eine vom Regierungsausschuß in Brüssel eingesetzte<br />

Arbeitsgruppe unter dem Vorsitz von L. M. Armand (Frankreich)<br />

im November 1955 einen eingehenden Bericht mit<br />

einem Plan für eine Zusammenarbeit auf dem Kernenergiegebiet<br />

vorgelegt (sog. EURATOM-Plan). Wegen der Vorgeschichte<br />

und der Einzelheiten dieses Planes darf wiederum<br />

auf die eingehende Darstellung in der „Atomwirtschaft”, Nr.<br />

2, Febr. 1956, S. 1 ff., verwiesen werden,<br />

Der Armand-Bericht wurde in der Folgezeit vom Regierungsausschuß<br />

in Brüssel überarbeitet. Der Regierungsausschuß<br />

hat nunmehr, am 21. April 1956, den „Bericht<br />

der Delegationsleiter an die Außenminister“ vorgelegt. Er<br />

enthält neben sehr umfangreichen Ausführungen über die<br />

60 TH YEAR ATW 57<br />

60 th year <strong>atw</strong><br />

The Federal Republic of Germany and the International Cooperation in the Nuclear Field ı Franz Josef Strauß


<strong>atw</strong> Vol. 60 (<strong>2<strong>01</strong>5</strong>) | Issue 1 ı January<br />

60 TH YEAR ATW 58<br />

Schaffung eines allgemeinen gemeinsamen europäischen<br />

Marktes in seinem zweiten Hauptteil Vorschläge für die Ausgestaltung<br />

von EURATOM. Der Bericht knüpft zwar weitgehend<br />

an den Armand-Bericht an, er weicht aber – in einer<br />

allgemein etwas liberalen Grundtendenz – in einzelnen<br />

Punkten nicht unwesentlich von diesem ab. Im folgenden<br />

können nur die wichtigsten Gesichtspunkte angesprochen<br />

werden.<br />

Der Bericht betont zunächst mit großem Nachdruck,<br />

daß EURATOM allen europäischen Staaten offenstehen<br />

solle, welche die Regeln der Gemeinschaft annehmen. Die<br />

Herstellung einer besonders engen Verbindung mit Großbritannien<br />

soll auf jeden Fall versucht werden. Der Bericht<br />

bemerkt ferner, daß EURATOM- und OEEC-Plan keine Gegensätze<br />

darstellen, sondern sich vielmehr gegenseitig ergänzen<br />

und fördern.<br />

Auf dem Gebiet der Forschung wird neben den Vorschlägen<br />

für eine gemeinsame Forschungstätigkeit im<br />

Rahmen von EURATOM ausdrücklich bemerkt, daß der<br />

größte Teil der Forschungsarbeiten weiterhin durch öffentliche<br />

oder private Forschungsträger in den Mitgliedsländern<br />

durchgeführt werden müsse. Forschung könne<br />

nicht „geplant” werden. Eine Zentralisierung der Forschung<br />

erscheine grundsätzlich verfehlt.<br />

In der Frage der Erfinderrechte wird Privateigentum<br />

und Privatinitiative grundsätzlich anerkannt. In Ausnahmefällen<br />

allerdings, auf die hier nicht im einzelnen eingegangen<br />

werden kann, ist die Möglichkeit von nichtausschließlichen<br />

Zwangslizenzen unter voller Entschädigung<br />

vorgesehen. Alle Entscheidungen sollen insoweit der Anfechtung<br />

vor einem Gerichtshof unterliegen.<br />

Auf dem Gebiete des Arbeits- und Bevölkerungsschutzes<br />

bezeichnet der Bericht die Aufstellung von verbindlichen<br />

Mindestnormen für die Mitglieder der Gemeinschaft<br />

als erforderlich. Eine entsprechende Kontrolle der Anlagen,<br />

in denen Kernbrennstoffe be- oder verarbeitet werden,<br />

wird als notwendig erachtet. Hierbei soll jedoch den<br />

Mitgliedsstaaten selbst die regelmäßige Überwachung der<br />

Sicherheitsbedingungen unter einem gewissen Kontrollrecht<br />

der Gemeinschaft überlassen bleiben.<br />

Ebenso wie die von EURATOM durchgeführten Forschungsarbeiten<br />

nur eine Ergänzung der gesamten Forschungstätigkeit<br />

darstellen sollen, soll auch der größte Teil<br />

der Investitionen auf dem Atomgebiet weiterhin Aufgabe<br />

der öffentlichen und privaten Hand in den Mitgliedsländern<br />

bleiben. Die Initiative der Unternehmen soll durch<br />

hinweisende Programme, die Verbreitung von Forschungsergebnissen<br />

und erforderlichenfalls durch finanzielle Mitwirkung<br />

gefördert werden. Wenn auch die Entwicklungsprojekte<br />

auf dem Gebiete der Atomenergie der Kommission<br />

zur Stellungnahme übersandt werden sollen, so betont<br />

doch der Bericht, daß die Organisation weder das Recht<br />

der Investitionslenkung noch das der Stellungnahme zu<br />

deren wirtschaftlicher Begründung oder dem Standort der<br />

Einrichtungen haben solle.<br />

Von besonderer wirtschaftlicher und auch politischer<br />

Bedeutung erscheint der Vorschlag des Berichts über die<br />

Versorgung mit Ausgangsstoffen und Kernbrennstoffen.<br />

Insoweit ist eine Einkaufspriorität von EURATOM vorgesehen,<br />

das seinerseits den Verbrauchern diese Stoffe zu einheitlichen<br />

und nichtdiskriminierenden Bedingungen zur<br />

Verfügung stellen soll. Eine Ausnahme von der Einkaufspriorität<br />

soll unter noch festzulegenden Bedingungen nur<br />

dann Platz greifen, wenn die Organisation erklärt, selbst<br />

nicht liefern zu können. Ein Eigentumsmonopol der Organisation<br />

wird in dem Bericht nicht vorgeschlagen. Unter<br />

gewissen Voraussetzungen, so bei stark angereicherten<br />

Kernbrennstoffen, ist allerdings nur eine pachtweise Überlassung<br />

vorgesehen.<br />

Um die Sicherheit vor Mißbrauch von Erzen und Kernbrennstoffen<br />

zu gewährleisten, wird in dem Bericht eine<br />

weitgehende Kontrolle und insbesondere der Rücklauf von<br />

Kernbrennstoffen am Ende eines Umwandlungszyklus in<br />

die Einrichtungen der Gemeinschaft vorgeschlagen.<br />

Der Bericht sieht ferner die unverzügliche Schaffung<br />

eines gemeinsamen Atommarktes vor, der später in dem<br />

allgemeinen gemeinsamen Markt aufgehen soll.<br />

Zur Erfüllung der Aufgaben von EURATOM wird eine Europäische<br />

Atomenergiekommission mit eigenen Befugnissen<br />

und einem gemeinsamen Mandat als ständiges Organ<br />

für die laufende Verwaltung der Gemeinschaft vorgeschlagen.<br />

Die Kommission soll einer parlamentarischen Kontrolle<br />

durch eine gemeinsame Versammlung und einer richterlichen<br />

Kontrolle durch einen Gerichtshof unterliegen. In<br />

Fragen der allgemeinen Politik sowie bei gewissen Entscheidungen<br />

von besonders weittragender Bedeutung soll der<br />

Ministerrat nach noch festzusetzenden Bestimmungen mitwirken.<br />

Der Europäischen Atomenergiekommission sollen<br />

für die Erfüllung ihrer Aufgaben gewisse Gremien zur Seite<br />

stehen, z.B. ein Sachverständigenbeirat für Wissenschaft<br />

und Wirtschaft und ein gemischter Ausschuß der Produzenten<br />

und Verbraucher. Für die Ausübung ihrer Funktionen<br />

gegenüber gemeinsamen Unternehmen soll eine Dienststelle<br />

für industrielle Verwaltung und für die Versorgungsaufgaben<br />

eine Agentur mit kaufmännischer Geschäftsführung<br />

eingerichtet werden. Der Bericht der Delegationsleiter ist in<br />

seiner Gesamtheit, wie betont werden muß, ein Sachverständigenbericht<br />

an die Regierungen. Er ist für diese somit<br />

nicht verbindlich. Allen beteiligten Regierungen sind daher<br />

Änderungsvorschläge in allen Einzelfragen Vorbehalten.<br />

Auf der Konferenz der Außenminister der Montanunionstaaten<br />

am 29. und 30. Mai in Venedig sind die Minister<br />

übereingekommen, den Bericht zur Grundlage der Beratungen<br />

einer Regierungskonferenz zu machen, die für den 26.<br />

Juni nach Brüssel einberufen ist. Diese Konferenz soll die<br />

notwendigen Einzelverträge für die Schaffung eines gemeinsamen<br />

europäischen Marktes und von EURATOM in einem<br />

als einheitliches Ganzes anzusehenden Vertragswerk<br />

ausarbeiten.<br />

Zwei Fragen von hochpolitischer Bedeutung sind allerdings<br />

gesonderten Beratungen der Außenminister Vorbehalten<br />

worden. Es handelt sich insoweit um die von Frankreich<br />

zur Erörterung gestellte Einbeziehung der überseeischen<br />

Gebiete in das Vertragswerk und um die Frage der militärischen<br />

Verwendung der Atomenergie. Es liegt auf der Hand,<br />

daß gerade die Probleme, die sich aus einer militärischen<br />

Betätigung eines oder mehrerer Mitgliedsstaaten auf dem<br />

Atomgebiet ergeben, erheblichen Einfluß auf die Ausgestaltung<br />

der Zusammenarbeit auf dem Gebiet der Erforschung<br />

und Nutzung der Kernenergie zu friedlichen Zwecken ausüben.<br />

In diesem Zusammenhang muß daran erinnert werden,<br />

daß die Bundesrepublik in den Pariser Verträgen auf<br />

die Herstellung von Atomwaffen verzichtet hat. Schließlich<br />

ist noch auf die erfreuliche Entschließung der Konferenz in<br />

Venedig hinzuweisen, nach der der belgische Außenminister<br />

Spaak beauftragt worden ist, befreundete europäische Länder<br />

sowie die europäischen Organisationen über die Arbeiten<br />

der kommenden Regierungskonferenz in Brüssel zu unterrichten<br />

und sie zu einer Beteiligung an den Bemühungen<br />

der Sechs ausdrücklich einzuladen.<br />

Autor:<br />

Franz Josef Strauß<br />

Bundesminister für Atomfragen<br />

60 th year <strong>atw</strong><br />

The Federal Republic of Germany and the International Cooperation in the Nuclear Field ı Franz Josef Strauß


<strong>atw</strong> Vol. 60 (<strong>2<strong>01</strong>5</strong>) | Issue 1 ı January<br />

Top<br />

Energy experts agree climate<br />

change threat needs nuclear<br />

solution<br />

(nei) The U.S. Environmental Protection<br />

Agency’s proposed rule regulating<br />

carbon emissions from existing<br />

power plants is the first time the<br />

agency has ever included nuclear energy<br />

as a solution to an air pollution<br />

problem, former EPA Deputy Administrator<br />

Bob Perciasepe said.<br />

Now president of the Center for<br />

Climate and Energy Solutions (C2ES),<br />

Perciasepe told a gathering of energy<br />

experts in Washington, D.C., that the<br />

pro-nuclear sentiment behind EPA’s<br />

Clean Power Plan is a “threshold<br />

change worth noting.”<br />

The plan, also known as the<br />

“111(d) rule” after the applicable section<br />

of the Clean Air Act, contains provisions<br />

to give states and regions<br />

credit for avoided carbon emissions if<br />

they preserve existing nuclear plants<br />

considered to be at risk of premature<br />

closure. It also seeks ways to provide<br />

credit for nuclear plants now under<br />

construction.<br />

The industry has criticized both<br />

provisions as being “right in intent but<br />

wrong on methodology”.<br />

Perciasepe acknowledged that<br />

EPA’s first draft of the plan was “not<br />

the most elegant” but was “a way to<br />

get started” while juggling competing<br />

interests and complicated interstate<br />

electricity issues. He said EPA recognized<br />

from the start that meeting<br />

President Obama’s near-term goal of a<br />

26 percent to 28 percent reduction in<br />

carbon from 2005 levels by 2025<br />

would be difficult to achieve without<br />

existing and new nuclear plants.<br />

The bottom line, Perciasepe said, is<br />

that “nuclear energy cannot be ignored<br />

as a solution to the health of the<br />

planet.” He said EPA has received 1.5<br />

million comments on the draft 111(d)<br />

rule and expressed confidence that the<br />

agency will be responsive to the concerns<br />

of the industry as it works toward<br />

finalizing the rule by June <strong>2<strong>01</strong>5</strong>.<br />

Other speakers at the event, conducted<br />

by the Howard Baker Forum,<br />

also referenced nuclear energy. Jessica<br />

Lovering, senior analyst at the<br />

Breakthrough Institute, compared<br />

other countries’ recent experiences<br />

with nuclear energy – especially those<br />

of France, Germany and Japan.<br />

Lovering noted that in the nearly<br />

four years that Japan put its 50 operable<br />

reactors on hiatus after the<br />

Fukushima accident and greatly increased<br />

its use of fossil fuels, there<br />

have been 4,000 additional deaths per<br />

year from air pollution as well as<br />

40,000 serious illnesses and 1 million<br />

minor illnesses.<br />

Contrasting France and Germany’s<br />

divergent energy policies, Lovering<br />

said France’s 80 percent share of nuclear<br />

energy gives it the cleanest air in<br />

Europe – including half Germany’s carbon<br />

intensity – as well as the lowest<br />

electricity prices in Europe. Germany,<br />

meanwhile, is essentially burning dirty<br />

brown coal to replace its nuclear capacity<br />

while not markedly increasing its<br />

use of renewables. This has resulted in<br />

greatly increased carbon emissions as<br />

well as higher electricity costs.<br />

She said France’s policy choice<br />

shows that a country does not have to<br />

make expensive sacrifices to move toward<br />

clean energy. In France, “the<br />

clean option IS the cheapest option,”<br />

she said.<br />

Installed nuclear energy capacity<br />

worldwide could nearly triple from<br />

today’s 375 gigawatts to as much as<br />

1,092 gigawatts by 2050 if nations recognize<br />

it as the best and least expensive<br />

means to address the threat of climate<br />

change, a new International<br />

Atomic Energy Agency report says.<br />

The report, “Climate Change and<br />

Nuclear Power 2<strong>01</strong>4,” says its analysis<br />

“indicates that nuclear power represents<br />

the largest single mitigation potential<br />

at the lowest average costs.”<br />

The Intergovernmental Panel on Climate<br />

Change notes that raising the<br />

percentage of global nuclear energy<br />

capacity from 16 percent in 2005 to 18<br />

percent in 2030 could avoid 1.9 billion<br />

metric tons of carbon dioxide-equivalence<br />

per year.<br />

IAEA notes that even its high projection,<br />

based on the International Energy<br />

Agency’s stringent “450 Scenario,”<br />

is achievable in the timeframe<br />

noted. As the chart shows, the nuclear<br />

industry was able to increase global<br />

net capacity 20 times from 1970 to<br />

1990, lending plausibility to the IEA’s<br />

forecast of 126 percent capacity<br />

growth through 2030.<br />

| | www.nei.org, 6598<br />

World<br />

Power-hungry emerging<br />

countries look to nuclear<br />

energy to meet demand<br />

(gd) Emerging markets will play a major<br />

role in the expansion of global nuclear<br />

installed capacity, which will increase<br />

from 371 GW in 2<strong>01</strong>3 to<br />

517 GW by 2025, at a Compound Annual<br />

Growth Rate (CAGR) of 2.5 %,<br />

according to research and consulting<br />

firm GlobalData.<br />

The company’s latest report* states<br />

that while the world’s nuclear power<br />

generation decreased in 2<strong>01</strong>1 and<br />

2<strong>01</strong>2 in the aftermath of the<br />

Fukushima meltdown, the market is<br />

gradually recovering, with large-scale<br />

capacity additions expected in the<br />

Asia-Pacific (APAC) region.<br />

Pranav Srivastava, GlobalData’s<br />

Associate Analyst covering Nuclear<br />

Power, says: “The after-effects of the<br />

Fukushima meltdown go beyond the<br />

decline of nuclear power generation<br />

in Japan.<br />

“Germany and Switzerland are<br />

now planning to phase out nuclear<br />

power, while others, such as China,<br />

Japan, France and the UK, have developed<br />

strong frameworks for nuclear<br />

safety and performed stress tests<br />

on their existing nuclear reactors to<br />

ensure safe operations.”<br />

Despite this more cautious global<br />

approach, GlobalData states that the<br />

emerging nuclear countries in the<br />

APAC region are building more than<br />

20 nuclear reactors and are planning<br />

to add 13.8 GW of nuclear power by<br />

2030, led by 6.8 GW of additions in<br />

Vietnam.<br />

Srivastava explains: “High electricity<br />

demand is a key driver for nuclear<br />

power development in Vietnam. The<br />

country plans to construct 10 new reactors<br />

by 2030 and has signed a number<br />

of co-operative governmental<br />

agreements regarding the peaceful use<br />

of nuclear energy with Russia, China,<br />

India, South Korea and Argentina.<br />

“Russia received a construction<br />

deal to build the first two reactors in<br />

2009, while Japan won the deal for<br />

the third and fourth reactors the following<br />

year.”<br />

GlobalData’s report states that despite<br />

anti-nuclear public opinion and<br />

safety concerns, there are a number of<br />

factors boosting demand for nuclear<br />

power.<br />

The analyst concludes: “Nuclear<br />

power has the capacity to produce<br />

large amounts of electricity and therefore<br />

meet the growing demand for<br />

power. It is also seen as a way of counteracting<br />

concerns over volatile fossil<br />

fuel prices, oil reserve shortages and<br />

rising carbon emissions.”<br />

| | www.globaldata.com, 6596<br />

NEA Director-General opened<br />

the Northeast Asia Nuclear<br />

Safety Symposium<br />

(nea) On 26 November 2<strong>01</strong>4, the NEA<br />

Director-General opened the Northeast<br />

Asia Nuclear Safety Symposium<br />

* Emerging Nuclear<br />

Power Countries –<br />

Market Forecast,<br />

Key Companies and<br />

Development Analysis<br />

to 2030<br />

59<br />

NEWS<br />

News


<strong>atw</strong> Vol. 60 (<strong>2<strong>01</strong>5</strong>) | Issue 1 ı January<br />

Operating Results October 2<strong>01</strong>4<br />

60<br />

Plant name<br />

Nominal<br />

capacity<br />

gross<br />

[MW]<br />

net<br />

[MW]<br />

Operating<br />

time<br />

enerator<br />

[h]<br />

Energy generated. gross<br />

[MWh]<br />

Month Year 1) Since<br />

commissioning<br />

Time availability<br />

[%]<br />

Energy availability Energy utilisation<br />

[%] *) [%] *)<br />

Month Year 1) Month Year 1) Month Year 1)<br />

NEWS<br />

KBR Brokdorf 1480 1410 745 1 073 558 9 462 <strong>01</strong>1 309 654 875 100.00 96.79 96.79 91.23 97.32 87.48<br />

KKE Emsland 6) 1406 1335 745 1 041 037 9 492 725 299 885 849 100.00 94.27 94.27 94.17 99.44 92.77<br />

KKG Grafenrheinfeld 1345 1275 745 979 090 8 521 034 326 996 325 100.00 90.70 90.70 89.47 97.37 86.39<br />

KWG Grohnde 1430 1360 745 1 000 954 8 142 281 335 7<strong>01</strong> 952 100.00 81.72 81.72 81.54 93.29 77.53<br />

KRB B Gundremmingen B 1344 1284 745 1 009 087 8 024 7<strong>01</strong> 298 775 953 100.00 82.41 82.41 81.61 100.55 81.47<br />

KRB C Gundremmingen C 1344 1288 745 1 002 395 8 569 143 288 935 646 100.00 88.50 88.50 87.74 99.52 86.80<br />

KKI 2 Isar 2 1485 1410 745 1 070 136 9 322 809 304 877 887 100.00 94.39 94.39 88.55 96.37 85.63<br />

GKN II Neckarwestheim II 1400 1310 735 999 500 9 307 200 284 934 314 98.63 91.70 91.70 91.46 97.12 90.39<br />

KKP 2 Philippsburg 2 1468 1402 745 1 087 192 8 1<strong>01</strong> 803 323 550 677 100.00 78.58 78.58 78.44 98.21 74.50<br />

*)<br />

Net-based values<br />

1)<br />

Refueling<br />

2)<br />

Inspection<br />

3)<br />

Repair<br />

4)<br />

Stretch-out-operation<br />

5)<br />

Stretch-in-operation<br />

6)<br />

New nameplate capacity<br />

as of 2<strong>01</strong>4:<br />

KKE Emsland from<br />

July 2<strong>01</strong>4:<br />

1 406 MW (gross),<br />

1 335 MW (net)<br />

Source: VGB<br />

(2 nd TRM+) in Seoul, Korea. During<br />

his presentation, he stressed the importance<br />

of the human dimension in<br />

nuclear safety and finding mechanisms<br />

to implement safety culture concepts<br />

effectively in different national<br />

contexts. He noted that the NEA is in a<br />

very good position to help facilitate<br />

further nuclear safety discussions in<br />

the region, and assured participants<br />

of the NEA’s support for that interaction.<br />

In closing, he recalled that “All<br />

problems have solutions, and working<br />

together we can overcome any challenge.”<br />

| | www.oecd-nea.org, 6597<br />

| | ITER construction site: The B2 slab, which will support some 400,000 tons<br />

of building and equipment (including the 23,000-ton ITER Tokamak),<br />

is now in place.<br />

ITER Tokamak complex will<br />

begin to rise<br />

(iter) The ITER Organization and the<br />

European Domestic Agency for ITER,<br />

Fusion for Energy, issued statements to<br />

mark the completion of Tokamak Complex<br />

foundations and the beginning of<br />

a new phase of ITER construction.<br />

In the centre of the vast excavated<br />

area that will house the principal<br />

buildings of the ITER scientific facility,<br />

workers have started to frame out the<br />

lower walls of the Tokamak Complex,<br />

a first step toward realizing the senstorey<br />

structure that will house the<br />

ITER fusion experiments.<br />

This milestone comes on the heels<br />

of the August completion of the Tokamak<br />

Complex basemat – the heavily<br />

reinforced “B2 slab” that will support<br />

some 400,000 tons of building and<br />

equipment, including the 23,000-ton<br />

ITER Tokamak.<br />

“The start of pouring activities for<br />

the massive Tokamak Complex is an<br />

important and exciting moment for<br />

the ITER Project,” declared ITER Director-General<br />

Osamu Motojima.<br />

“Years of hard work by all ITER Members<br />

are bearing fruit as the ITER facility<br />

takes shape in France and as the<br />

manufacturing of the systems and<br />

components advances. ITER is progressing<br />

on all fronts.”<br />

The imminent start of concrete<br />

pouring for the walls will mark the beginning<br />

of the second phase of ITER<br />

construction. Four years were necessary<br />

to complete the first phase – the<br />

creation of a ground support structure<br />

for the Tokamak Complex. From August<br />

2<strong>01</strong>0 to August 2<strong>01</strong>4, workers excavated<br />

the 17-metre- deep, 90 x 130<br />

metre Tokamak Complex Seismic Pit;<br />

created a ground-level basemat and<br />

retaining walls; installed 493 seismic<br />

columns and pads; and poured the B2<br />

foundation slab.<br />

All works have been carried out by<br />

the European Domestic Agency “Fusion<br />

for Energy” which, as part of its<br />

contribution to ITER, is responsible<br />

for the financial contribution and<br />

technical supervision linked to the<br />

construction of 39 scientific buildings<br />

and dedicated areas on the ITER platform.<br />

The Director of Fusion for Energy,<br />

Henrik Bindslev, stressed that “Europe<br />

is taking ITER construction to the next<br />

level. The basemat is … where scientific<br />

work and industrial know-how<br />

will come together and be deployed to<br />

seize the power of fusion energy.”<br />

The Tokamak Complex will dominate<br />

the ITER platform when it is completed.<br />

The seven-storey structure will<br />

house not only the ITER Tokamak, but<br />

also more than 30 different plant systems<br />

including cooling systems and<br />

electrical power supplies. Eighty<br />

metres tall, 120 metres long and 80<br />

metres wide, the Tokamak Complex<br />

will require 16,000 tons of rebar,<br />

150,000 m 3 of concrete and 7,500 tons<br />

of steel for the building structure.<br />

The contract for Tokamak Complex<br />

construction was awarded in December<br />

2<strong>01</strong>2 by Fusion for Energy to the<br />

French-Spanish consortium VFR<br />

(made up of French companies VINCI<br />

Construction Grands Projets, Razel-<br />

Bec, Dodin Campenon Bernard,<br />

Campenon Bernard Sud-Est, GTM<br />

Sud and Chantiers Modernes Sud, and<br />

the Spanish firm Ferrovial Agroman).<br />

The EUR 300-million contract also<br />

includes the construction of the ITER<br />

Assembly Building; the radio frequency<br />

heating building; areas for<br />

heating, ventilation and air conditioning;<br />

a cleaning facility and site services<br />

buildings; the cryoplant compressor<br />

and coldbox building; the control<br />

buildings; the fast discharge and<br />

switching network resistor building;<br />

and three bridges.<br />

In the years to come, the number of<br />

workers involved in ITER construction<br />

will rise from 300, currently, to more<br />

than 2,000.<br />

| | www.iter.org, 6605<br />

World Energy Outlook warns<br />

nuclear industry on<br />

decommissioning and disposal<br />

(nucnet) The nuclear energy industry<br />

needs to be ready to manage “an unprecedented<br />

rate” of decommissioning<br />

with almost 200 of the 434 react-<br />

News


<strong>atw</strong> Vol. 60 (<strong>2<strong>01</strong>5</strong>) | Issue 1 ı January<br />

ors that were operating commercially<br />

at the end of 2<strong>01</strong>3 to be retired by<br />

2040, a report by the International<br />

Energy Agency says.<br />

The World Energy Outlook 2<strong>01</strong>4<br />

(WEO) says “the vast majority” of<br />

these reactor retirements will be in the<br />

European Union, the US, Russia and<br />

Japan.<br />

The industry will need to manage<br />

this unprecedented rate of decommissioning,<br />

while also building substantial<br />

new capacity for those reactors<br />

that are replaced, WEO says. The IEA<br />

estimates the cost of decommissioning<br />

plants that are retired to be more<br />

than $100 billion. But WEO warns<br />

that “considerable uncertainties” remain<br />

about these costs, reflecting the<br />

relatively limited experience to date in<br />

dismantling and decontaminating reactors<br />

and restoring sites for other<br />

uses. Regulators and utilities need to<br />

continue to ensure that adequate<br />

funds are set aside to cover these future<br />

expenses, WEO says. It also warns<br />

that all countries which have ever had<br />

nuclear generation facilities have an<br />

obligation to develop solutions for<br />

long-term storage.<br />

In one scenario examined in WEO,<br />

the cumulative amount of spent nuclear<br />

fuel that has been generated<br />

(a significant portion of which becomes<br />

high-level radioactive waste)<br />

more than doubles, reaching 705,000<br />

tonnes in 2040.<br />

Today – 60 years since the first nuclear<br />

reactor started operating – no<br />

country has yet established permanent<br />

facilities for the disposal of highlevel<br />

radioactive waste from commercial<br />

reactors, which continues to build<br />

up in temporary storage, WEO says.<br />

It says nuclear power is one of the<br />

few options available at scale to reduce<br />

carbon dioxide emissions while<br />

providing or displacing other forms of<br />

baseload generation. Nuclear has<br />

avoided the release of an estimated 56<br />

gigatonnes of CO 2 since 1971, or almost<br />

two years of total global emissions<br />

at current rates. Policies concerning<br />

nuclear power will remain an<br />

essential feature of national energy<br />

strategies, even in countries which are<br />

committed to phasing out the technology<br />

and that must provide for alternatives,<br />

WEO says.<br />

In WEO’s central scenario, global<br />

nuclear power capacity increases by<br />

almost 60 percent from 392 gigawatts<br />

in 2<strong>01</strong>3 to more than 620 GW in 2040.<br />

However, its share of global electricity<br />

generation, which peaked almost two<br />

decades ago, rises by just one percentage<br />

point to 12 percent. This growth is<br />

concentrated in just four countries –<br />

China, India, South Korea and Russia.<br />

These are markets where electricity is<br />

supplied at regulated prices, utilities<br />

have state backing or governments act<br />

to facilitate private investment. Of the<br />

growth in nuclear generation to 2040,<br />

China accounts for 45 percent while<br />

India, South Korea and Russia collectively<br />

make up a further 30 percent.<br />

Generation increases by 16 percent in<br />

the US, rebounds in Japan – although<br />

not to levels seen before the Fukushima-Daiichi<br />

accident – and falls by 10<br />

percent in the European Union.<br />

WEO says despite the challenges<br />

nuclear faces, it has specific characteristics<br />

that underpin the commitment<br />

of some countries to maintain it as a<br />

future option. “Nuclear plants can<br />

contribute to the reliability of the<br />

power system where they increase the<br />

diversity of power generation technologies<br />

in the system. For countries that<br />

import energy, it can reduce their dependence<br />

on foreign supplies and<br />

limit their exposure to fuel price<br />

movements in international markets.”<br />

Although the upfront costs to build<br />

new nuclear plants are high and, often,<br />

uncertain, nuclear power can offer<br />

economic benefits by adding stability<br />

to electricity costs and improving<br />

balance of payments, WEO says.<br />

| | www.iea.org, www.nucnet.org,<br />

6606<br />

Europe<br />

New Commissioner lays out<br />

plans for European ‘Energy<br />

Union’<br />

(nucnet) Momentum is building for a<br />

European Energy Union like never before,<br />

but if progress is to be made<br />

member states will need to stop thinking<br />

of markets as national territories<br />

and be willing to explore the common<br />

buying of gas, the new European Commissioner<br />

for Energy Union has said.<br />

In a speech at the Tatra Summit in<br />

Slovakia yesterday, Maroš Šefčovič<br />

laid out his vision for an Energy Union<br />

– an idea that was first aired in 2009<br />

– saying it needs to be built on “security,<br />

solidarity and trust”.<br />

“We need to integrate,” he said.<br />

“We need to explore the common purchasing<br />

of gas. We will need to diversify<br />

our energy sources and routes,<br />

and reduce high energy dependency<br />

on several of our member states.”<br />

He said geopolitical events – notably<br />

in Ukraine and Russia – worldwide<br />

energy competition and the impact<br />

of climate change are triggering a<br />

“mind switch” in terms of the EU’s energy<br />

and climate strategy.<br />

Mr Šefčovič, who supported the<br />

European Commission’s decision to<br />

approve a contract for the proposed<br />

Hinkley Point C nuclear plant in the<br />

UK, said transparency is needed as to<br />

how member states are negotiating<br />

with third country suppliers. The EC<br />

should be involved in these negotiations.<br />

Similarly, no member state<br />

should modify its energy system<br />

without consultation because this<br />

may have “huge consequences” for another<br />

member state’s systems.<br />

Building a European Energy Union<br />

is one of the EC’s most pressing challenges,<br />

he said. The EU imports 53<br />

percent of its energy at a cost of more<br />

than €400 billion a year, making it the<br />

biggest energy customer in the world.<br />

Mr Šefčovič said one of his key<br />

goals is to finalise an internal energy<br />

market. He said a “transparent and<br />

competitive” energy market will be the<br />

backbone of the Energy Union, bringing<br />

real benefits to households through<br />

affordable energy prices and industry<br />

through greater competitiveness.<br />

In a progress report on the internal<br />

energy market published last month,<br />

the EC said there are still challenges<br />

that need to be addressed.<br />

The report said more investment is<br />

needed in infrastructure including<br />

smart grids. It said Europe needs to<br />

implement a set of simple, harmonised<br />

rules for gas and electricity trading.<br />

Mr Šefčovič said the Third Energy<br />

Package – a legislative package that<br />

entered into force in 2009 aimed at<br />

producing a more harmonised internal<br />

gas and electricity market –<br />

must be “fully implemented and applied”<br />

through strict monitoring and<br />

with assistance for any member states<br />

experiencing problems with implementation.<br />

The package includes measures<br />

such as the ‘Unbundling Provision’,<br />

which says organisations involved in<br />

electricity and gas transmission cannot<br />

also be involved in generation and<br />

supply. The aim of the legislation is to<br />

eliminate any potential conflict of interest.<br />

Mr Šefčovič intends to produce a<br />

short policy paper within months with<br />

concrete proposals for an Energy<br />

Union.<br />

The idea of a European Energy<br />

Union dates to a December 2009 declaration<br />

by Jerzy Buzek, president of<br />

the European Parliament at the time,<br />

who said a “European Energy Community”<br />

could become the next big EU<br />

project.<br />

61<br />

NEWS<br />

News


<strong>atw</strong> Vol. 60 (<strong>2<strong>01</strong>5</strong>) | Issue 1 ı January<br />

62<br />

NEWS<br />

In May 2<strong>01</strong>0, Mr Buzek signed a<br />

declaration which explained the<br />

concept of energy community and<br />

called for “a radical shift” in the way<br />

Europe produces and consumes energy.<br />

One of his proposals was that the<br />

EU must have the ability to pool its<br />

supply capacities and engage in “coordinated<br />

energy purchasing”. In the<br />

long term, if the EU is faced with a major<br />

energy crisis, common strategic<br />

reserves must be available.<br />

In September, when he was still<br />

prime minister of Poland, the new EC<br />

president Donald Tusk urged other EU<br />

leaders to create an Energy Union in<br />

order to reduce Europe’s dependence<br />

upon Russian gas imports.<br />

Poland has decided to build new<br />

nuclear reactors to move away from its<br />

heavy reliance on coal and gas. The<br />

first unit is expected to come into commercial<br />

operation by 2025.<br />

| | europa.eu, www.nucnet.org, 6607<br />

China<br />

Hongyanhe-3 achieves first<br />

criticality<br />

(nucnet) The Hongyanhe-3 nuclear<br />

unit in Liaoning province, northeastern<br />

China, has achieved first criticality,<br />

the China Nuclear Energy Agency<br />

(CNEA) has said.<br />

The Chinese-designed Generation<br />

II CPR-1000 pressurised water reactor<br />

(PWR) unit reached first criticality on<br />

27 October 2<strong>01</strong>4, CNEA said. All parameters<br />

were “normal” and “reasonable”,<br />

CNEA said.<br />

The unit is undergoing physical<br />

testing to validate the performance of<br />

the reactor core and the performance<br />

of the instrumentation and control<br />

(I&C) system.<br />

The next step is to start the turbine<br />

on the secondary, non-nuclear side of<br />

the unit and test whether it can operate<br />

at full speed.<br />

Hongyanhe has two commercially<br />

operational units and two under construction,<br />

all of the domestic CPR-<br />

1000 design.<br />

Hongyanhe-1 and -2 entered commercial<br />

operation in June 2<strong>01</strong>3 and<br />

October 2<strong>01</strong>3. Construction of<br />

Hongyanhe-3 and -4 started in March<br />

and August 2009.<br />

According to the International<br />

Atomic Energy Agency’s Power Reactor<br />

Information System (Pris) database,<br />

China has 22 nuclear units in<br />

commercial operation and 27 units<br />

under construction.<br />

| | www.cnecc.com, 6604<br />

Research<br />

IAEA-led project solves mystery<br />

of how helium enters the<br />

atmosphere<br />

(iaea) How helium – the light noble<br />

gas that sends balloons floating in the<br />

air – enters the atmosphere has<br />

wracked the brains of scientists for<br />

generations. Now the mystery has<br />

been solved, as an unexpected side benefit<br />

of research done by a group of<br />

scientists in an IAEA-led project to<br />

study groundwater in South America.<br />

The Guarani Aquifer is one of the<br />

world’s largest water systems, and<br />

Pradeep Aggarwal, Head of the IAEA’s<br />

Isotope Hydrology Section and a<br />

group of other scientists set out to<br />

study this aquifer to learn how it can<br />

be better managed and protected.<br />

“In effect, this aquifer, under Argentina,<br />

Brazil, Paraguay and Uruguay,<br />

is a huge natural laboratory<br />

where we were able to infer for the<br />

first time that helium from deep in the<br />

earth reaches the atmosphere along<br />

with the discharging ground water,”<br />

said Pradeep Aggarwal.<br />

Helium is produced as uranium<br />

and thorium in the earth’s crust decay.<br />

Until this study it was unclear how it<br />

entered the atmosphere.<br />

The results of the findings, following<br />

three years of study, has been published<br />

in Nature Geoscience. Aggarwal<br />

is the lead author with two other<br />

IAEA experts and nine contributors<br />

from five institutions in Brazil, the<br />

United States and Switzerland who<br />

took part in the study. They used a<br />

laser-cooling and atom-trapping technique<br />

at the Argonne National Laboratory<br />

in the United States for measuring<br />

the rare, radioactive krypton isotope<br />

(Kr-81). In this technique, specific<br />

lasers are used to slow down and<br />

count individual Kr-81 atoms, which<br />

are only a few among more than a trillion<br />

atoms of stable krypton (Kr-84).<br />

The reduced number of Kr-81 atoms in<br />

groundwater compared to the atmospheric<br />

krypton allowed the estimation<br />

of the age of water, which established<br />

the link between groundwater<br />

and the passage of helium. Krypton-81<br />

has a half-life of about 229,000 years<br />

and is used for dating old (about<br />

50,000 to one million year-old)<br />

groundwater.<br />

The IAEA Guarani project aimed to<br />

provide more knowledge about the<br />

aquifer.<br />

“The Agency is working with its international<br />

partners to improve our<br />

understanding of groundwater systems<br />

so that we can better protect and<br />

manage this vital freshwater resource,”<br />

said Aggarwal.<br />

“As part of this process we need to<br />

continue to better understand earth’s<br />

physical systems. In pursuing the<br />

Guarani project, we found out more<br />

than we expected, but that is the<br />

nature of scientific exploration.”<br />

Helium is quite rare on earth but is<br />

widely used in industry. The gas is important<br />

to the electronics industry and<br />

for cooling super-conducting magnets<br />

such as those used in magnetic resonance<br />

imaging (MRI). Most helium is<br />

obtained from natural gas drilling in<br />

the United States.<br />

| | www.iaea.org, 6599<br />

FRM II: New hall for cooling<br />

systems of ultra-cold neutron<br />

source<br />

(frmii) South of the Maier-Leibnitz<br />

Laboratory a hall in wood construction<br />

is currently being built. From next year<br />

on, it will house the mock-up for the<br />

cooling systems of the ultracold neutron<br />

source at the FRM II. The hall will<br />

be ready at the end of November 2<strong>01</strong>4.<br />

The hall was necessary in order to<br />

be able to test the large cooling systems<br />

the source of ultracold neutrons<br />

in non-nuclear operation. Only after a<br />

year of testing the compressors and<br />

gas tanks will be taken to the neutron<br />

source for the preparation of ultracold<br />

neutrons.<br />

The foundations for three gas<br />

tanks, filled with the coolants nitrogen<br />

and helium, are already poured.<br />

The 70 square metres wide and 3.70<br />

metres high hall consists of a wooden<br />

structure. It will house the compressors<br />

of the refrigerator, which is<br />

to ensure the cooling of the neutrons.<br />

The ultracold neutrons are slowed<br />

down so much that they have a velocity<br />

of only about 20 kilometers an<br />

hour. Planned experiments with ultracold<br />

neutrons include the measurement<br />

of the lifetime of free neutrons<br />

and the search for an electric dipole<br />

moment of the neutron.<br />

| | www.frm2.tum.de, 6603<br />

Company News<br />

Successful commissioning of<br />

Taishan EPR reactors full-scope<br />

simulator<br />

(areva) CORYS, a company co-owned<br />

by AREVA and EDF, announced the<br />

successful installation and commissioning<br />

of the Taishan plant’s full scope<br />

simulator at the on-site training center,<br />

in the Guangdong province, in China.<br />

News


<strong>atw</strong> Vol. 60 (<strong>2<strong>01</strong>5</strong>) | Issue 1 ı January<br />

| | View of the Taishan site in an early stage of construction of Taishan unit 1. (Courtesy: Areva)<br />

This marks an important milestone for<br />

the project as plant’s staff will now<br />

start training to prepare the plant’s<br />

commissioning and operation phases.<br />

The simulator will provide enhanced<br />

training to the customer’s 100<br />

operators for the two EPR units in construction<br />

in Taishan.<br />

Developed through CORYS’ stateof-the-art<br />

simulation workshop<br />

ALICES © , the simulator offers a very<br />

high level of realism. In addition,<br />

thanks to its unequalled calculation<br />

capacity, the device is very reactive<br />

and its behaviors are extremely<br />

faithful to those of the reference<br />

plant.<br />

“This commissioning adds to<br />

Flamanville 3 EPR’s full-scope simulator<br />

supplied by CORYS”, said Ralf<br />

Gathmann, CORYS CEO. “With this<br />

second validation, we become leaders<br />

in the segment of the GEN3 Full-<br />

Scope simulator.”<br />

“With the Taishan full scope simulator<br />

in service, a major milestone for<br />

the plant construction project has<br />

been successfully achieved,” said<br />

Zhou Weichang, Head of the Taishan<br />

training centre, for TNPJVC*. “We<br />

are grateful to the CORYS project<br />

team who made this project a success.”<br />

| | www.areva.com, 6600<br />

Rusatom Overseas welcomes<br />

Fortum’s decision to enter<br />

Hanhikivi 1 NPP project<br />

(rus) Rusatom Overseas welcomes the<br />

conditional decision of the Finnish energy<br />

company Fortum on entering the<br />

Hanhikivi 1 nuclear power plant project<br />

by purchasing up to 15 per cent of<br />

Voimaosakeyhtiö SF shares. Fortum’s<br />

purchase of a minority stake in the<br />

project implemented by Fennovoima<br />

will allow to meet the requirement of<br />

the Ministry of Employment and the<br />

Economy of Finland in accordance<br />

with which at least 60 per cent of the<br />

shares should be in the Finnish ownership.<br />

Kirill Komarov, Deputy CEO for<br />

Corporate Development and International<br />

Business of Rosatom Corporation<br />

said: “Russian nuclear industry<br />

has been cooperating with Fortum for<br />

more than 40 years, and we are happy<br />

that our cooperation is entering a new<br />

phase. Fortum’s readiness to participate<br />

in our joint project with Fennovoima<br />

is a truly positive signal. If<br />

Fortum becomes a shareholder, the<br />

Hanhikivi 1 project will have access to<br />

the competences of one of the leading<br />

energy experts in Finland.”<br />

In December 2<strong>01</strong>3, Rusatom Overseas<br />

and Fennovoima signed the EPC<br />

Contract for Hanhikivi 1 nuclear<br />

power plant in the region of Northern<br />

Ostrobothnia, Finland. In March 2<strong>01</strong>4,<br />

RAOS Voima Oy, subsidiary of Rusatom<br />

Overseas, purchased a 34-percent<br />

share in Fennovoima.<br />

| | www.rosatom.ru<br />

Westinghouse inks multi-party<br />

agreement to develop nuclear<br />

power in Turkey<br />

(westn) Westinghouse Electric Company,<br />

China’s State Nuclear Power<br />

Technology Corporation (SNPTC) and<br />

Electricity Generation Company<br />

(EÜAŞ), the largest electric power<br />

company in Turkey, announced an<br />

agreement to enter into exclusive negotiation<br />

to develop and construct a<br />

four-unit nuclear power plant site in<br />

the Republic of Turkey based on<br />

AP1000 ® reactor technology.<br />

The project also covers all life cycle<br />

activities including operations, nuclear<br />

fuel, maintenance, engineering,<br />

plant services and decommissioning.<br />

“We are excited to expand into the<br />

Republic of Turkey and provide our<br />

cutting-edge technology and innovative<br />

passive safety systems,” said Danny<br />

Roderick, Westinghouse president<br />

and CEO. “We are confident that our<br />

partnering relationship with SNPTC<br />

and the leadership they have demonstrated<br />

in China will provide the<br />

greatest value to the customers in the<br />

Republic of Turkey.”<br />

Eight AP1000 units are currently<br />

under construction worldwide: two<br />

each at the Vogtle and V.C. Summer<br />

sites in the U.S. and the Sanmen and<br />

Haiyang sites in China. In addition,<br />

shareholder agreements have been<br />

signed in the past few months for the<br />

development of AP1000 plants at the<br />

Moorside site in the United Kingdom<br />

and the Kozloduy site in Bulgaria.<br />

Westinghouse Electric Company, a<br />

group company of Toshiba Corporation<br />

(TKY:6502), is the world’s pioneering<br />

nuclear energy company and is<br />

a leading supplier of nuclear plant<br />

products and technologies to utilities<br />

throughout the world. Westinghouse<br />

supplied the world’s first pressurized<br />

water reactor in 1957 in Shippingport,<br />

Pa., U.S. Today, Westinghouse technology<br />

is the basis for approximately<br />

one-half of the world’s operating nuclear<br />

plants. AP1000 is a trademark of<br />

Westinghouse Electric Company LLC.<br />

All rights reserved.<br />

State Nuclear Power Technology<br />

Corporation (SNPTC) is the general<br />

contractor of the first four AP1000<br />

units in the world being built in China.<br />

By working together with overseas<br />

partners, SNPTC is working on providing<br />

safe, clean, economic and reliable<br />

energy by advanced nuclear technology,<br />

products and services.<br />

Electricity Generation Company<br />

(EÜAS) is a state owned company<br />

which was founded to generate electricity<br />

in compliance with the energy<br />

and economic policies of the state and<br />

| | View of the AP1000 construction site in Sanmen, China. Eight AP1000<br />

units are currently under construction worldwide. Negotiations to develop<br />

and construct a four-unit nuclear power plant site in the Republic of Turkey<br />

have started. (Courtesy: Westinghouse)<br />

63<br />

NEWS<br />

News


<strong>atw</strong> Vol. 60 (<strong>2<strong>01</strong>5</strong>) | Issue 1 ı January<br />

64<br />

Uranium<br />

Prize range: Spot market [USD*/lb(US) U 3O 8]<br />

140.00<br />

) 1<br />

Uranium<br />

Prize range: Spot market [USD*/lb(US) U 3O 8]<br />

140.00<br />

) 1<br />

120.00<br />

120.00<br />

100.00<br />

100.00<br />

80.00<br />

80.00<br />

NEWS<br />

60.00<br />

40.00<br />

Prices in real USD, base: US prices (1982 to1984) *<br />

60.00<br />

40.00<br />

20.00<br />

20.00<br />

0.00<br />

Year<br />

* Actual nominal USD prices, not real prices referring to a base year. Sources: Energy Intelligence, Nukem; Bild/Figure: <strong>atw</strong> 2<strong>01</strong>4<br />

2<strong>01</strong>4<br />

0.00<br />

* Actual nominal USD prices, not real prices referring to a base year. Year<br />

Sources: Energy Intelligence, Nukem; Bild/Figure: <strong>atw</strong> 2<strong>01</strong>4<br />

Jan. 2<strong>01</strong>2<br />

Jan. 2<strong>01</strong>3<br />

Jan. 2<strong>01</strong>4<br />

Jan. <strong>2<strong>01</strong>5</strong><br />

| | Uranium spot market prices from 1980 to 2<strong>01</strong>4 and from 2004 to 2<strong>01</strong>4. The price range is shown.<br />

In years with U.S. trade restrictions the unrestricted uranium spot market price is shown.<br />

Separative work:<br />

Spot market price range [USD*/kg UTA]<br />

180.00<br />

) 1<br />

Conversion:<br />

Spot conversion price range [USD*/kgU]<br />

14.00<br />

) 1<br />

160.00<br />

12.00<br />

140.00<br />

120.00<br />

10.00<br />

100.00<br />

8.00<br />

80.00<br />

6.00<br />

60.00<br />

40.00<br />

4.00<br />

20.00<br />

2.00<br />

0.00<br />

* Actual nominal USD prices, not real prices referring to a base year.<br />

Year<br />

Jan. 2<strong>01</strong>2<br />

Jan. 2<strong>01</strong>3<br />

Jan. 2<strong>01</strong>4<br />

Jan. <strong>2<strong>01</strong>5</strong><br />

Source: Energy Intelligence, Nukem; Bild/Figure: <strong>atw</strong> 2<strong>01</strong>4<br />

0.00<br />

* Actual nominal USD prices, not real prices referring to a base year. Year<br />

Source: Energy Intelligence, Nukem; Bild/Figure: <strong>atw</strong> 2<strong>01</strong>4<br />

Jan. 2<strong>01</strong>2<br />

Jan. 2<strong>01</strong>3<br />

Jan. 2<strong>01</strong>4<br />

Jan. <strong>2<strong>01</strong>5</strong><br />

| | Separative work and conversion market price ranges from 2004 to 2<strong>01</strong>4. The price range is shown.<br />

)1<br />

In December 2009 Energy Intelligence changed the method of calculation for spot market prices. The change results in virtual price leaps.<br />

in accordance with the principles of<br />

efficiency and profitability.<br />

| | www.westinghousenuclear.com,<br />

66<strong>01</strong><br />

People<br />

Luc Oursel passed away<br />

Luc Oursel, president and CEO of<br />

AREVA, passed away on 3 December<br />

2<strong>01</strong>4.<br />

| | www.areva.com<br />

Market data<br />

(All information is supplied without<br />

guarantee.)<br />

Nuclear fuel supply market data<br />

Information in current (nominal)<br />

U.S.-$. No inflation adjustment of<br />

prices with respect to a base year. Separative<br />

work data for the formerly<br />

„secondary market”. Uranium prices<br />

[US-$/lb U 3 O 8 ; 1 lb = 453.53 g; 1 lb<br />

U 3 O 8 = 0.385 kg U]. Conversion<br />

prices [US-$/kg U], Separative work<br />

[US-$/SWU (Separative work unit)].<br />

January to December: 2<strong>01</strong>2<br />

• Uranium: 40.25–53.00<br />

• Conversion: 6.25–10.50<br />

• Separative work: 118.00–147.00<br />

January to December 2<strong>01</strong>3:<br />

• Uranium: 34.00–43.50<br />

• Conversion: 9.25–11.50<br />

• Separative work: 98.00–127.00<br />

January to July 2<strong>01</strong>4:<br />

• Uranium: 28.10–36.00<br />

• Conversion: 7.75–11.00<br />

• Separative work: 89.00–98.00<br />

August 2<strong>01</strong>4:<br />

• Uranium: 28.60–32.50<br />

• Conversion: 7.75–10.50<br />

• Separative work: 89.00–92.00<br />

September 2<strong>01</strong>4:<br />

• Uranium: 32.00–36.50<br />

• Conversion: 7.75–10.00<br />

• Separative work: 86.00–92.00<br />

| | Source: Energy Intelligence,<br />

www.energyintel.com<br />

Cross-border price for hard coal<br />

Cross-border price for hard coal in<br />

[€/t TCE] and orders in [t TCE] for<br />

use in power plants (TCE: tonnes of<br />

coal equivalent, German border):<br />

2<strong>01</strong>0: 85.33; 23,795,158<br />

2<strong>01</strong>1: 106.97; 26,513,704<br />

2<strong>01</strong>2: 93.02; 27,453,635<br />

2<strong>01</strong>3: 79.12, 31,637,166<br />

2<strong>01</strong>4:<br />

I. quarter: 75.16; 8,446,794<br />

II. quarter: 71.18; 6,374,963<br />

| | Source: BAFA, some data provisional<br />

EEX Trading Results in<br />

September 2<strong>01</strong>4<br />

(eex) In September 2<strong>01</strong>4, the total<br />

volume in power derivatives on the<br />

European Energy Exchange (EEX)<br />

amounted to 154.3 TWh. This represents<br />

the highest volume that has been<br />

traded on this market so far in 2<strong>01</strong>4.<br />

The French Power Futures volume increased<br />

by 265 percent to 7.3 TWh<br />

compared to the previous year<br />

(September 2<strong>01</strong>3: 2.0 TWh). This represents<br />

the highest monthly volume<br />

that has been traded and registered<br />

for clearing at EEX since the launch of<br />

this product. The volume in Italian<br />

Power Futures increased by 49 percent<br />

to 12.7 TWh compared to the previous<br />

month (August 2<strong>01</strong>4: 8.5 TWh).<br />

In September, 71.7 TWh were registered<br />

at EEX for clearing. Clearing<br />

and settlement of all transactions was<br />

executed by European Commodity<br />

Clearing (ECC).<br />

News


<strong>atw</strong> Vol. 60 (<strong>2<strong>01</strong>5</strong>) | Issue 1 ı January<br />

The base load price for the year<br />

<strong>2<strong>01</strong>5</strong> in the Phelix Future product<br />

(market area Germany/Austria) was<br />

quoted at EUR 34.72 per MWh on<br />

30 September 2<strong>01</strong>4. The peak load<br />

price for <strong>2<strong>01</strong>5</strong> in the Phelix Future<br />

product was quoted at EUR 43.58<br />

per MWh.<br />

On the EEX Market for Emission Allowances,<br />

a total volume of 44.9 million<br />

tonnes of CO 2 was traded in<br />

September, compared with 108.3 million<br />

tonnes of CO 2 in September 2<strong>01</strong>3.<br />

During the month, Primary Market<br />

Auctions contributed 37.3 million<br />

tonnes of CO 2 to the total volume. In<br />

September, the first Primary Market<br />

Auction for EU Aviation Allowances<br />

(EUAA) in 2<strong>01</strong>4 was conducted by<br />

EEX with a volume of 1.64 million<br />

tonnes of CO 2 .<br />

In September, the monthly average<br />

of the ECarbix (European Carbon Index)<br />

amounted to EUR 5.99 per EUA.<br />

On the EUA Derivatives Market, the<br />

daily settlement price in the front year<br />

contract (Dec-2<strong>01</strong>4) varied between<br />

EUR 5.68 per EUA and EUR 6.42 per<br />

EUA.<br />

The Power Derivatives Market<br />

volumes for September 2<strong>01</strong>4 are<br />

broken down as follows: (September<br />

2<strong>01</strong>3 in brackets):<br />

• Total trading volume:<br />

154,260,536 MWh<br />

(177,867,<strong>01</strong>9 MWh)<br />

• Phelix Futures: 133,165,765 MWh<br />

(170,410,054 MWh)<br />

• French Futures: 7,318,397 MWh<br />

(1,970,645743 MWh)<br />

• Italian Futures: 12,708,494 MWh<br />

• Dutch Futures: 74,705 MWh<br />

• Belgian Futures: 184,655 MWh<br />

• Spanish Futures<br />

(Trade registration): 183,655 MWh<br />

• Phelix Options: 807,520<br />

(5,486,320 MWh)<br />

| | www.eex.com<br />

MWV crude oil/product prices:<br />

August 2<strong>01</strong>4<br />

According to information and calculations<br />

by the Association of the German<br />

Petroleum Industry MWV e.V in<br />

August 2<strong>01</strong>4 the prices for mineral oil<br />

products such as super, diesel fuel<br />

and fuel oil developed inconsistently<br />

compared to the previous month<br />

(July 2<strong>01</strong>4) in Germany. The average<br />

gas station prices for Euro super consisted<br />

of 155.10 €Cent (July 2<strong>01</strong>4:<br />

158.63 €Cent, approx. -2.23 % in<br />

brackets: each information for previous<br />

month or rather previous month<br />

comparison), for diesel fuel of<br />

136.542 €Cent (136.76; -0.18 %) and<br />

for heating oil (HEL) of 78.33 €Cent<br />

(78.<strong>01</strong>; +0.41 %).<br />

The tax share for super with a.m.<br />

consumer price of 155.10 €Cent<br />

(158.63 €Cent) consisted of 65.45<br />

€Cent (42.2 %, 65.45 €Cent) for<br />

the current constant mineral oil<br />

tax share and 24.76 €Cent (current<br />

rate: 19.0 % = const., 25.33 €Cent)<br />

for the valued-added tax. The<br />

product price (notation Rotterdam)<br />

consisted of 55.84 €Cent (35.2 %,<br />

56.77 €Cent) and the gross margin<br />

consisted of 11.63 €Cent (7.5 %;<br />

12.<strong>01</strong> €Cent). Thus the overall tax<br />

share for super results of 61.2 %<br />

(60.3).<br />

Worldwide crude oil prices<br />

(monthly average price PEC/Brent/<br />

WTI) were approx. -5.41 % (-2.90 %)<br />

lower in August 2<strong>01</strong>4 compared to<br />

July 2<strong>01</strong>4: each in US-$/bbl: OPEC<br />

basket: 100.75 (105.61); UK-Brent:<br />

1<strong>01</strong>.61 (106.77); West Texas Intermediate<br />

(WTI): 96.54 (103.59).<br />

| | www.mwv.de<br />

Publications<br />

Proceedings of AMNT 2<strong>01</strong>4<br />

(inforum) As one of Europe‘s biggest<br />

and most prestigious nuclear energy<br />

conferences the AMNT features a<br />

wide range programme with 200 expert<br />

lectures relating to the three Key<br />

Topics:<br />

• Reactor Operation, Safety<br />

• Competence, Innovation, Regulation<br />

• Fuel, Decommissioning & Disposal<br />

Advantages of the Proccedings CD:<br />

• Presentations of Topcial Sessions<br />

and Focus Sessions<br />

• Abstracts of Technical Sessions<br />

and Workshop Preserving Competence<br />

• List of all autors and committee<br />

members<br />

• Practical search function and userfriendly<br />

structure<br />

| | www.kernenergie.de, 228<br />

Energiemarkt Deutschland –<br />

Jahrbuch <strong>2<strong>01</strong>5</strong><br />

Hans-Wilhelm Schiffer<br />

Zahlen, Daten, Fakten gehören zum<br />

Handwerkzeug; auch und gerade in<br />

einer so mit Realitäten verbundenen<br />

Branche, wie der Energiewirtschaft.<br />

Von daher zählt das von Hans-Wilhelm<br />

Schiffer herausgegebene Jahrbuch<br />

“Energiemarkt Deutschland”<br />

auch in seiner Auflage für das Jahr<br />

<strong>2<strong>01</strong>5</strong> zu den unverzichtbaren Werke<br />

für alle, die bei der Energieversorgung<br />

mitreden wollen.<br />

Das Jahrbuch „Energiemarkt<br />

Deutschland <strong>2<strong>01</strong>5</strong>“ liefert auf 636 Seiten<br />

einen fundierten und aktuellen<br />

Überblick über die Struktur und Entwicklung<br />

des deutschen Energiemarktes<br />

und das Handeln seiner Teilnehmer.<br />

Das Buch befasst sich eingehend<br />

mit den Märkten und einzelnen Teilmärkten<br />

für Mineralöl, Braunkohle,<br />

Steinkohle, Erdgas und Elektrizität.<br />

Den erneuerbaren Energien ist ein<br />

eigenes Kapitel gewidmet.<br />

Es präsentiert Daten und Fakten<br />

zu Angebot und Nachfrage, erläutert<br />

Preisbildungsmechanismen für Erdöl,<br />

Kohle, Erdgas und Strom und<br />

beschreibt die nationalen und europäischen<br />

rechtlichen Rahmenbedingungen.<br />

Eigens erörtert werden die internationalen<br />

Klimaschutzvereinbarungen<br />

und die Umsetzung des Treibhausgas-<br />

Emissionshandels in Deutschland.<br />

Alle wichtigen Zusammenhänge<br />

des Energiemarktes sind in 130 Tabellen<br />

und 190 Abbildungen anschaulich<br />

aufbereitet.<br />

Käufer des Buches haben die Möglichkeit,<br />

die Grafiken von einer eigenen<br />

Website herunterzuladen und bei<br />

Angabe der Quelle ihren eigenen Präsentationen<br />

oder Dokumenten einzubinden.<br />

Schiffer, Hans-Wilhelm: Energiemarkt<br />

Deutschland Jahrbuch <strong>2<strong>01</strong>5</strong><br />

(2<strong>01</strong>4), Köln:<br />

TÜV Media, 636 Seiten mit zahlreichen<br />

farbigen Abbildungen und Tabellen,<br />

ISBN: 978-3-8249-1849-2, 99,- €,<br />

| | www.tuev-media.de, 229<br />

65<br />

NEWS<br />

News


<strong>atw</strong> Vol. 60 (<strong>2<strong>01</strong>5</strong>) | Issue 1 ı January<br />

NUCLEAR TODAY 66<br />

IAEA Puts Cyber Security in Focus for<br />

Nuclear Facilities in <strong>2<strong>01</strong>5</strong><br />

John Shepherd<br />

Later this year, the International Atomic Energy Agency<br />

(IAEA) will convene a special conference to discuss computer<br />

security, in the wake of cyber attacks on global financial<br />

institutions and government agencies that were increasingly<br />

in the news in 2<strong>01</strong>4.<br />

In common with other industrial and commercial sectors,<br />

computer security at facilities handling nuclear and other<br />

radioactive material, in addition to related activities such<br />

as transport, represents what the IAEA has said are “a<br />

unique set of challenges”.<br />

According to the IAEA, the prevalence of IT security incidents<br />

in recent years involving the Stuxnet malware<br />

“demonstrated that nuclear facilities can be susceptible to<br />

cyber attack”. The IAEA said this and other events have significantly<br />

raised global concerns over potential vulnerabilities<br />

and the possibility of a cyber attack, or a joint cyber-physical<br />

attack, that could impact on nuclear security.<br />

The IAEA has correctly identified that the use of computers<br />

and other digital electronic equipment in physical<br />

protection systems at nuclear facilities, as well as in facility<br />

safety systems, instrumentation, information processing<br />

and communication, “continues to grow and presents an<br />

ever more likely target for cyber attack”.<br />

According to the IAEA, computer systems and networks<br />

supporting nuclear facility operations include many<br />

non-standard information technology systems in terms of<br />

architecture, configuration, or performance requirements.<br />

“These systems can include specialised industrial control<br />

systems, access control systems, alarm and tracking systems,<br />

and information systems pertaining to safety and<br />

security and emergency response,” the IAEA said.<br />

The agency’s Vienna conference, to be held in June, will<br />

review emerging trends in computer security and areas<br />

that may still need to be addressed. The meeting follows a<br />

declaration of ministers of IAEA member states in 2<strong>01</strong>3<br />

that called on the agency to help raise awareness of the<br />

growing threat of cyber attacks and their potential impact<br />

on nuclear security.<br />

The conference is being organised “to foster international<br />

cooperation in computer security as an essential element<br />

of nuclear security”, the IAEA said.<br />

The US Nuclear Energy Institute (NEI) explained recently<br />

that a cyber attack on the country’s nuclear plants<br />

“cannot prevent critical systems in a nuclear energy facility<br />

from performing their safety functions”. The NEI said nuclear<br />

plant safety systems are “completely isolated from the<br />

internet and, even if cyber security were breached, the reactors<br />

are designed to shut down safely if necessary”.<br />

The NEI stressed that nuclear plants are also designed<br />

to automatically disconnect from the power grid if there is<br />

a disturbance that could be caused by a cyber attack.<br />

The US Nuclear Regulatory Commission requires power<br />

reactor licensees and those seeking permission to build<br />

and operate new reactors to prove that their digital computer<br />

and communication systems and networks are protected<br />

against cyber attacks, including those systems and<br />

networks associated with safety-related and important-<br />

to-safety functions and emergency preparedness functions,<br />

including offsite communications, and support systems<br />

and equipment important to safety and security.<br />

Figures from the US Federal Bureau of Investigation<br />

(FBI) highlight why ongoing attention to the potential<br />

threats to digital systems is needed. According to the FBI,<br />

cyber attacks are an increasing risk for the US electric sector<br />

and have eclipsed terrorism as the primary threat. The<br />

FBI said its industrial control systems cyber emergency response<br />

team responded to 256 incidents that targeted critical<br />

infrastructure sectors in fiscal year 2<strong>01</strong>3, and 59 percent<br />

of those incidents involved the energy sector.<br />

The UK’s Nuclear Decommissioning Authority (NDA) said<br />

towards the end of 2<strong>01</strong>4 that its network is subject to<br />

30,000 automated cyber attacks or scans every day – which<br />

the NDA said was “not unusual”.<br />

The NDA, which warned that networks in its supply chain<br />

were also at risk of attack, said suppliers bidding for certain<br />

contracts involving sensitive and personal information are<br />

now required to provide assurance of compliance with the<br />

requirements of the UK’s Cyber Essentials (CE) programme.<br />

CE “defines a focused set of controls which provide<br />

cost-effective basic security for organisations of all sizes”,<br />

the NDA said. In particular, it focuses on threats “which require<br />

low levels of attacker skill, and which are widely available<br />

online”.<br />

An advocacy body for the global software industry, the<br />

US-based BSA / The Software Alliance, said last November<br />

that there is an “uneven landscape” for cyber security readiness<br />

in Europe which should be tackled by investing in<br />

critical infrastructure.<br />

BSA said a draft EU network and information security<br />

directive should focus on “Europe’s most critical networks<br />

and infrastructure, such as transport, energy and banking,<br />

in order to establish a foundation for cyber security readiness<br />

first and foremost in those areas where disruption<br />

would have major security and public safety impacts”.<br />

However, as important and necessary as activities to<br />

combat potential threats to cyber security are, it will be especially<br />

important to ensure that these efforts make clear<br />

that risks of cyber attacks are not unique to nuclear facilities<br />

and infrastructure.<br />

Indeed, it will be important for industry leaders and all<br />

involved to highlight the cyber security issue as one of importance<br />

to the global energy sector (among others) as a<br />

whole, and not something that should encourage a new and<br />

unbalanced focus, on the nuclear energy industry alone.<br />

Details of the IAEA’s ‘International Conference on Computer<br />

Security in a Nuclear World: Expert Discussion and Exchange’<br />

are on the ‘meetings’ section of the agency’s web site.<br />

Author<br />

John Shepherd<br />

nuclear 24<br />

24 Charlotte Street<br />

Brighton BN2 1A6/United Kongdom<br />

Nuclear Today<br />

IAEA Puts Cyber Security in Focus for Nuclear Facilities in <strong>2<strong>01</strong>5</strong> ı John Shepherd


nucmag.com<br />

The Whole Story of<br />

Nuclear Power<br />

– 50 Years on Disc<br />

<strong>atw</strong>-digital | 50 years: 1956 to 2005<br />

<strong>atw</strong>-digital<br />

| 50 years: 1956 to 2005<br />

Single User License<br />

nucmag.com<br />

© INFORUM ı Berlin | 2<strong>01</strong>4<br />

p<br />

p<br />

p<br />

p<br />

Expert’s articles, reports, interviews and news covering all<br />

technical, economic and political topics of nuclear power<br />

and technology.<br />

Read the articles on your computer or print them out.<br />

Navigate quickly to the desired papers with a few mouse clicks.<br />

Convenient search function in all papers as full-text search<br />

and/or deliberate search for authors and documents titles.<br />

I would like to order (single user license),<br />

payment by invoice:<br />

P <strong>atw</strong>-digital 799.– €*<br />

| 50 years: 1956 to 2005 599.– €*<br />

Also available on Disc:<br />

u | 2006 to 2<strong>01</strong>0 199.– €*<br />

149.– €*<br />

u | 2<strong>01</strong>1, 2<strong>01</strong>2, 2<strong>01</strong>3 or 2<strong>01</strong>4 69.– €*<br />

49.– €*<br />

Surname, First Name<br />

Organization/Order no.<br />

DAtF-/KTG-Member (yes/no)*<br />

Street<br />

Postal Code City Country<br />

Please send your order to:<br />

INFORUM Verlags- und<br />

Verwaltungsgesellschaft mbH<br />

Robert-Koch-Platz 4<br />

1<strong>01</strong>15 Berlin, Germany<br />

Fax-No. +49 30 498555-19<br />

or order online: www.nucmag.com<br />

Prices excluding postage.<br />

Prices including 19% VAT for Germany and all EU member states<br />

without VAT number. For EU member states with VAT number and<br />

all other countries VAT will not be added.<br />

Telephone/E-mail<br />

VAT no. (EU countries except Germany)<br />

I order <strong>atw</strong>-digital | 50 years: 1956 to 2005 and agree<br />

to the terms and cancellation rights referred to below.<br />

Date<br />

Signature<br />

Cancellation: This order may be cancelled within 14 days. A notice<br />

must be sent to INFORUM Verlags- und Verwaltungsgesellschaft mbH,<br />

Robert-Koch-Platz 4, 1<strong>01</strong>15 Berlin, Germany, within this period.<br />

The deadline will be observed by due mailing. Prompt dispatch of the<br />

notification is sufficient for compliance with the cancellation conditions.<br />

*<br />

Special price for DAtF- and KTG-Members.


The International Expert Conference on Nuclear Technology<br />

Estrel Convention<br />

Center Berlin<br />

5–7 May<br />

<strong>2<strong>01</strong>5</strong><br />

Germany<br />

Early Bird Discount!<br />

Register by 31 January <strong>2<strong>01</strong>5</strong><br />

and save up to EUR 170<br />

3 Gold Sponsor<br />

3 Key Topics – 1 Event<br />

Outstanding Know-How &<br />

Sustainable Innovations<br />

Enhanced Safety &<br />

Operation Excellence<br />

Decommissioning Experience &<br />

Waste Management Solutions<br />

Highlights<br />

3 More than 2 days comprehensive programme on each key topic<br />

3 200 expert presentations from high-level professional speakers<br />

3 Around 1,000 participants from around 30 countries<br />

3 About 40 international exhibitors and sponsors<br />

3 Networking with experts and decision-makers<br />

3 Up-to-date developments and innovations<br />

3 Silver Sponsors<br />

Don’t miss this key event of the global nuclear energy community.<br />

www.nucleartech-meeting.com

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!