12.08.2013 Views

MATEMAATLINE ANALRRS II 1. KORDSED INTEGRAALID ...

MATEMAATLINE ANALRRS II 1. KORDSED INTEGRAALID ...

MATEMAATLINE ANALRRS II 1. KORDSED INTEGRAALID ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

10. R axdx = ax + C ln a<br />

1<strong>1.</strong> R dx<br />

1+x2 = arctan x + C<br />

12. R<br />

p dx<br />

1 x2 = arcsin x + C<br />

ja integraali omadusi<br />

I R [f(x) g(x)] dx = R R<br />

f(x)dx g(x)dx<br />

<strong>II</strong> R af(x)dx = a R f(x)dx<br />

<strong>II</strong>I R f(x)dx = F (x) + C ! R f(ax + b)dx = 1F<br />

(ax + b) + C<br />

a<br />

Kehtib ka muutujate vahetuse valem e. asendusvõte<br />

R f ['(x)] ' 0 (x)dx = R f(u)du, kus u = '(x)<br />

ja ositi integreerimise<br />

R<br />

valem<br />

R<br />

udv = uv vdu.<br />

Näide 1<strong>1.</strong><br />

<strong>1.</strong> R (2x 3 3 sin x+5 p x)dx = 2 x3+1<br />

2. R xdx<br />

3. R 2<br />

1<br />

3( cos x)+5 3+1 x 1 2 +1<br />

1<br />

2<br />

1+x2 = (u = 1 + x2 ; du = 2xdx; xdx = du<br />

R<br />

1 du ) = 2 2 u<br />

= ln (1 + x 2 ) + C<br />

dx<br />

= (u = ln x; du =<br />

ln 3 xdx<br />

x<br />

= 4p ln 4 2 = ln 2<br />

4. R x ln xdx =<br />

5,<br />

R 3<br />

4<br />

1<br />

2<br />

x ) = R ln 2<br />

ln 1 u3du = u4<br />

4<br />

u = ln x du = dx<br />

x<br />

dv = xdx v = x2<br />

2<br />

= x2 ln x<br />

2<br />

arcsin p x<br />

p dx = 1 x u = arcsin p x du = 1 p 1<br />

1 x 2 p x<br />

dv = dx p v = 2 1 x p 1 x<br />

= 2 p 1 x arcsin p x j 3 R 3<br />

4 4 2<br />

1 1<br />

2 2<br />

p 1 x<br />

2 p 1 x p dx = x<br />

= 2 1<br />

2 arcsin p 3 + p2 arcsin 2 2 1<br />

R 3<br />

p 4 + pdx 1 =<br />

2 x<br />

2<br />

= 3 + 2<br />

4 p 2 + 2p2 j 3<br />

4<br />

Määratud integraali rakendusi.<br />

1<br />

2<br />

= 12 3 p 2 4 + p 3 p 2<br />

1 +C =<br />

+1 2x4 +3 cos x+ 10<br />

3 xpx+C ln u + C =<br />

= 1<br />

2<br />

jln 2<br />

0 = 1<br />

4 ln4 2 =<br />

R<br />

xdx<br />

2 = x2 ln x<br />

2<br />

=<br />

x 2<br />

4 +C<br />

<strong>1.</strong> Tasapinnalise kujundi pindala.<br />

Kui kõvertrapets (vaata joonist all) on piiratud ülalt ja alt vastavalt joontega<br />

y = f(x) ja y = g(x) ning vasakult ja paremalt vastavalt sirgetega x = a<br />

ja x = b, siis tema pindala saab leida valemist<br />

[f(x) g(x)] dx<br />

S = R b<br />

a<br />

8

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!