09.10.2013 Aufrufe

master thesis - Astrophysik Kiel - Christian-Albrechts-Universität zu ...

master thesis - Astrophysik Kiel - Christian-Albrechts-Universität zu ...

master thesis - Astrophysik Kiel - Christian-Albrechts-Universität zu ...

MEHR ANZEIGEN
WENIGER ANZEIGEN

Erfolgreiche ePaper selbst erstellen

Machen Sie aus Ihren PDF Publikationen ein blätterbares Flipbook mit unserer einzigartigen Google optimierten e-Paper Software.

ith typical parameters (Σ = 10 2 g cm −2 , h/r = 0.05,<br />

= 1) we find,<br />

8 2. Grundlagen<br />

τI,LR ≃ 0.5 Myr. (235)<br />

ne concludes that there is a strong argument that<br />

ype I migration ought to play an important role in the<br />

ormation of giant planet cores.<br />

The above calculation of the Lindblad torque can be<br />

erified against hydrodynamic simulations, and is considred<br />

to be reliable. It is, however, only part of the total<br />

orque on a planet. What about the co-orbital torque?<br />

sing a similar linear calculation, it is possible to estiate<br />

the corotation torque as well. This was done by<br />

anaka, Takeuchi & Ward (2002), who derived a total<br />

orque,<br />

T = −(1.36 + 0.54γ)<br />

2 Mp rpΩp<br />

Σpr<br />

M∗ cs<br />

4 pΩ2p . (236)<br />

his formula, and its corresponding migration rate, are<br />

ften described as representing the “standard Type I<br />

igration rate”. One should be aware, however, that<br />

he formula is derived under conditions (isothermality,<br />

smooth density distribution with radius) that do not<br />

lways hold in real disks. It is not, therefore, the comlete<br />

answer even in linear theory, and extra caution is<br />

equired before using it under conditions far from its doian<br />

of validity (such as when there is a sharp density<br />

ump in the disk).<br />

For very low mass planets, or planets embedded in<br />

ighly viscous disks, the standard Type I migration rate<br />

alculated from linear theory may be reliable. For higher<br />

ass planets and / or weaker viscosities, however, it may<br />

e more profitable (conceptually, and possibly mathe-<br />

atically) to consider the torque in terms of the dynamcs<br />

of closed horseshoe orbits in the co-orbital region.<br />

hese orbits, which are analogous to librating particle<br />

rbits in the restricted three-body problem, are illusrated<br />

in Figure 30. As gas in the disk executes the<br />

-shaped turns at the ends of the horseshoe, changes<br />

n the density of the gas exert a torque on the planet.<br />

his way of thinking about the torque was considered<br />

y (Ward, 1991), but largely ignored until simulations<br />

y Paardekooper & Mellema (2006) uncovered a depen-<br />

ence of the Type I migration rate on the thermal prop-<br />

rties of the disk. Subsequently, many authors have studed<br />

the co-orbital Type I torque in both isothermal (Caoli<br />

& Masset, 2009; Paardekooper & Papaloizou, 2009)<br />

nd non-isothermal (radiative or adiabatic) disks (Kley,<br />

itsch & Klahr, 2009; Kley & Crida, 2008; Masset &<br />

asoli, 2009; Paardekooper et al., 2009). Currently it<br />

ppears as if,<br />

• The persistence of strong co-orbital torques depends<br />

upon whether or not they are saturated. Saturation<br />

is possible because the region of the disk<br />

that admits horseshoe orbits is closed and relatively<br />

small. It cannot absorb or give an arbitrary amount<br />

FIG. 30 The nonlinear calculation of the torque on an embedded<br />

planet, due to co-orbital gas, is derived from consideration<br />

of the horseshoe drag. The key point is that gas at radii<br />

close to that of the planet executes closed horseshoe-shaped<br />

orbits in the corotating frame. Changes in density as parcels<br />

of gas execute the U-shaped turns result in a non-zero torque<br />

on the planet. This torque depends on how “non-adiabatic”<br />

the gas is: does the gas cool radiatively on the time scale<br />

of the turn? One should also note that the region that supports<br />

horseshoe orbits is closed. In the absence of viscosity,<br />

this means that the co-orbital gas can only exchange a finite<br />

amount of angular momentum with the planet, after which<br />

the torque saturates.<br />

Abbildung 2.2.: Skizze der Hufeisenregion. Dies ist die Region in der die Korotationsdrehmomente<br />

wirken. Das Material am Rand der Hufreisenregion vollzieht<br />

Hufeisenorbits (engl. horseshoe orbits), die vor allem für den Drehmomentübertrag<br />

auf den Planeten von Bedeutung sind. Material weiter innen<br />

oder außen bewegt sich auf den üblichen kreisförmigen Orbits (engl.<br />

circulating orbits) (Armitage, 2007).<br />

2.3. Kleine gravitative Störungen<br />

of angular momentum to a planet, unless it is “connected”<br />

to the rest of the disk via viscous stresses.<br />

Large and persistent co-orbital torques are possible<br />

provided that the disk is viscous enough that the<br />

torque remains unsaturated.<br />

Wir wollen nun also eine keplersche Scheibe mit einem störenden gravitierenden Objekt<br />

geringer Masse betrachten. Als typisches Massenverhältnis ist das Verhältnis zwischen<br />

Sonne und Neptun <strong>zu</strong> nennen, welches etwa q ≈ 10−4 beträgt. Da es sich nur um eine<br />

geringe Störung handelt, lässt sich das Problem durch eine lineare Störungsanalyse untersuchen.<br />

Sei nun Ω die Winkelgeschwindigkeit der ungestörten, keplersch rotierenden<br />

Scheibe:<br />

• The torque depends upon the cooling time scale<br />

of the gas in the co-orbital region, measured relative<br />

to the time required for the gas to execute<br />

the horseshoe turns. Outward migration under<br />

the combined influence of co-orbital and Lindblad<br />

torques (which remain negative) GM⋆ may be possible in<br />

the inner regions Ω (r) of= the disk, where the high optical<br />

depth results in a long cooling time.<br />

These results are all very new, and it is reasonable to<br />

expect that further revisions to our understanding may<br />

still occur. In particular, little work has yet been done<br />

to address the question of how realistic turbulent flows<br />

within the disk affect the torque and its saturation.<br />

To summarize, Type I migration torques remain poorly<br />

understood. The co-orbital torque is probably important,<br />

but the mathematical relation between the linear<br />

47<br />

r 3 . (2.20)<br />

Die radiale Geschwindigkeit sei Null und der Satellit befinde sich auf einem kreisförmigen<br />

Orbit. Das Gravitationspotential Ψ ergibt sich aus dem des Zentralobjekts und dem des<br />

Satelliten:<br />

Ψ = Ψ⋆ + Ψs. (2.21)<br />

Entsprechend der Scheibengeometrie bieten sich Zylinderkoordinaten (r, ϕ, z) <strong>zu</strong>r Beschreibung<br />

des Problems an. Wir beschränken uns auf das zweidimensionale Problem,

Hurra! Ihre Datei wurde hochgeladen und ist bereit für die Veröffentlichung.

Erfolgreich gespeichert!

Leider ist etwas schief gelaufen!