21.06.2013 Views

Ganong's Review of Medical Physiology, 23rd Edition

Ganong's Review of Medical Physiology, 23rd Edition

Ganong's Review of Medical Physiology, 23rd Edition

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

TDL MI TAL<br />

A<br />

300<br />

300<br />

300<br />

300<br />

300<br />

300<br />

300<br />

300<br />

E<br />

300<br />

300<br />

350<br />

350<br />

350<br />

350<br />

500<br />

500<br />

300<br />

300<br />

300<br />

300<br />

300<br />

300<br />

300<br />

300<br />

300<br />

300<br />

350<br />

350<br />

350<br />

350<br />

500<br />

500<br />

300<br />

300<br />

300<br />

300<br />

300<br />

300<br />

300<br />

300<br />

150<br />

150<br />

300<br />

300<br />

300<br />

300<br />

500<br />

500<br />

B<br />

400<br />

400<br />

400<br />

400<br />

400<br />

400<br />

400<br />

400<br />

F<br />

325<br />

325<br />

425<br />

425<br />

425<br />

425<br />

600<br />

600<br />

400<br />

400<br />

400<br />

400<br />

400<br />

400<br />

400<br />

400<br />

325<br />

325<br />

425<br />

425<br />

425<br />

425<br />

600<br />

600<br />

200<br />

200<br />

200<br />

200<br />

200<br />

200<br />

200<br />

200<br />

125<br />

125<br />

225<br />

225<br />

225<br />

225<br />

400<br />

400<br />

leading to the normal equilibrium condition, although the steps<br />

do not occur in vivo. It is also important to remember that the<br />

equilibrium is maintained unless the osmotic gradient is washed<br />

out. These steps are summarized in Figure 38–16 for a cortical<br />

nephron with no thin ascending limb. Assume first a condition<br />

in which osmolality is 300 mOsm/kg <strong>of</strong> H 2 O throughout the<br />

descending and ascending limbs and the medullary interstitium<br />

(Figure 38–16A). Assume in addition that the pumps in the<br />

thick ascending limb can pump 100 mOsm/kg <strong>of</strong> Na + and Cl –<br />

from the tubular fluid to the interstitium, increasing interstitial<br />

osmolality to 400 mOsm/kg <strong>of</strong> H 2 O. Water then moves out <strong>of</strong><br />

the thin descending limb, and its contents equilibrate with the<br />

interstitium (Figure 38–16B). However, fluid containing 300<br />

mOsm/kg <strong>of</strong> H 2 O is continuously entering this limb from the<br />

proximal tubule (Figure 38–16C), so the gradient against which<br />

the Na + and Cl – are pumped is reduced and more enters the<br />

interstitium (Figure 38–16D). Meanwhile, hypotonic fluid flows<br />

into the distal tubule, and isotonic and subsequently hypertonic<br />

fluid flows into the ascending thick limb. The process keeps<br />

repeating, and the final result is a gradient <strong>of</strong> osmolality from<br />

the top to the bottom <strong>of</strong> the loop.<br />

In juxtamedullary nephrons with longer loops and thin<br />

ascending limbs, the osmotic gradient is spread over a greater<br />

C<br />

300<br />

300<br />

300<br />

300<br />

400<br />

400<br />

400<br />

400<br />

G<br />

300<br />

325<br />

325<br />

425<br />

425<br />

425<br />

425<br />

600<br />

CHAPTER 38 Renal Function & Micturition 655<br />

FIGURE 38–16 Operation <strong>of</strong> the loop <strong>of</strong> Henle as a countercurrent multiplier producing a gradient <strong>of</strong> hyperosmolarity in the<br />

medullary interstitium (MI). TDL, thin descending limb; TAL, thick ascending limb. The process <strong>of</strong> generation <strong>of</strong> the gradient is illustrated as occurring<br />

in hypothetical steps, starting at A, where osmolality in both limbs and the interstitium is 300 mOsm/kg <strong>of</strong> water. The pumps in the thick<br />

ascending limb move Na + and Cl – into the interstitium, increasing its osmolality to 400 mOsm/kg, and this equilibrates with the fluid in the thin<br />

descending limb. However, isotonic fluid continues to flow into the thin descending limb and hypotonic fluid out <strong>of</strong> the thick ascending limb. Continued<br />

operation <strong>of</strong> the pumps makes the fluid leaving the thick ascending limb even more hypotonic, while hypertonicity accumulates at the<br />

apex <strong>of</strong> the loop. (Modified and reproduced with permission from Johnson LR [editor]: Essential <strong>Medical</strong> <strong>Physiology</strong>, Raven Press, 1992.)<br />

300<br />

300<br />

300<br />

300<br />

400<br />

400<br />

400<br />

400<br />

300<br />

325<br />

325<br />

425<br />

425<br />

425<br />

425<br />

600<br />

200<br />

200<br />

200<br />

200<br />

400<br />

400<br />

400<br />

400<br />

125<br />

225<br />

225<br />

225<br />

225<br />

400<br />

400<br />

600<br />

D<br />

350<br />

350<br />

350<br />

350<br />

500<br />

500<br />

500<br />

500<br />

H<br />

312<br />

375<br />

375<br />

425<br />

425<br />

513<br />

513<br />

700<br />

350<br />

350<br />

350<br />

350<br />

500<br />

500<br />

500<br />

500<br />

312<br />

375<br />

375<br />

425<br />

425<br />

513<br />

513<br />

700<br />

150<br />

150<br />

150<br />

150<br />

300<br />

300<br />

300<br />

300<br />

112<br />

175<br />

175<br />

225<br />

225<br />

313<br />

313<br />

500<br />

distance and the osmolality at the tip <strong>of</strong> the loop is greater. This<br />

is because the thin ascending limb is relatively impermeable to<br />

water but permeable to Na + and Cl – . Therefore, Na + and Cl –<br />

move down their concentration gradients into the interstitium,<br />

and there is additional passive countercurrent multiplication.<br />

The greater the length <strong>of</strong> the loop <strong>of</strong> Henle, the greater the<br />

osmolality that can be reached at the tip <strong>of</strong> the medulla.<br />

The osmotic gradient in the medullary pyramids would not<br />

last long if the Na + and urea in the interstitial spaces were<br />

removed by the circulation. These solutes remain in the pyramids<br />

primarily because the vasa recta operate as countercurrent<br />

exchangers (Figure 38–17). The solutes diffuse out <strong>of</strong> the vessels<br />

conducting blood toward the cortex and into the vessels<br />

descending into the pyramid. Conversely, water diffuses out <strong>of</strong><br />

the descending vessels and into the fenestrated ascending vessels.<br />

Therefore, the solutes tend to recirculate in the medulla<br />

and water tends to bypass it, so that hypertonicity is maintained.<br />

The water removed from the collecting ducts in the pyramids<br />

is also removed by the vasa recta and enters the general<br />

circulation. Countercurrent exchange is a passive process; it<br />

depends on movement <strong>of</strong> water and could not maintain the<br />

osmotic gradient along the pyramids if the process <strong>of</strong> countercurrent<br />

multiplication in the loops <strong>of</strong> Henle were to cease.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!