22.01.2014 Views

download searchable PDF of Circuit Design book - IEEE Global ...

download searchable PDF of Circuit Design book - IEEE Global ...

download searchable PDF of Circuit Design book - IEEE Global ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

308 Direct-Coupled Filters<br />

Table 8.3. Overcoupled QL Values for N~3<br />

Lp (dB) QLI Qu Qu QL Product QuFp<br />

Lossless Source<br />

om 2.542 2.427 1.0 6.169 0.3146<br />

0.10 2.112 2.106 1.0 4.449 0.5158<br />

0.2 1.939 1.937 1.0 3.756 0.6138<br />

0.5 1.687 1.629 1.0 2.748 0.7981<br />

1.0 1.491 l.318 1.0 1.965 1.012<br />

2.0 1.307 0.940 1.0 1.229 1.355<br />

3.0 1.213 0.7011 1.0 0.8501 1.674<br />

6.0 1.087 0.3201 1.0 0.3479 2.708<br />

9.5 1.035 0.1371 1.0 0.1420 4.296<br />

• Lossy Source<br />

0.01 1.0 1.5420 1.0 1.542 0.6292<br />

0.1 1.0 1.1120 1.0 1.1120 1.0320<br />

0.2 1.0 0.9389 1.0 0.9389 1.2280<br />

0.5 1.0 0.6870 1.0 0.6870 1.5960<br />

1.0 1.0 0.4913 1.0 0.4913 2.0240<br />

2.0 1.0 0.3072 1.0 0.3072 2.711<br />

3.0 1.0 0.2125 1.0 0.2125 3.3490<br />

6.0 1.0 0.0870 1.0 0.0870 5.4150<br />

9.5 1.0 0.0355 1.0 0.0355 8.5910<br />

Example 8.5b. Reconsider the specifications in Section 8.2.4 for the<br />

Chebyshev overcoupled shape (with perfect inverters): the N = 3 lossy-source<br />

filter is tuned to 50 MHz, and a 60-dB attenuation is required at 90 MHz.<br />

Find the loaded-Q values and Ihe passband width if the passband ripple is to<br />

be 0.2 dB. First find output resonator Qu; (8.18) shows that the loaded-Q<br />

product must be 1035.32. Then (8.21) and the normalized loaded-Q product <strong>of</strong><br />

0.9389 from Table 8.3 yield Q u = 10.3312. Therefore, QL2=0.9389 X 10.3312<br />

=9.7000, and Qu = 10.3312. Since QuFO., = 1.2280, F 0 .2=0.1189; i.e., the<br />

0.2-dB-ripple passband widlh is 11.89%.<br />

8.4.2. The Buttenvorth Maximally Flat Response Shape. The Butterworth<br />

response shape is defined by<br />

L(f) = 10 10glO[ 1+ .,(:p(] dB; (8.71)<br />

• was defined in (8.62), and L p<br />

is shown in Figure 8.25. Butterworth response<br />

Equation (8.71) can be solved for the number <strong>of</strong> resonators required for the<br />

given slopband loss L, at fractional frequency F, and comparable values <strong>of</strong> L p

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!