26.10.2014 Views

JAEA-Data/Code 2007-004 - Welcome to Research Group for ...

JAEA-Data/Code 2007-004 - Welcome to Research Group for ...

JAEA-Data/Code 2007-004 - Welcome to Research Group for ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

scattering kernel at point r’ from direction<br />

Ω ' at energy E' <strong>to</strong> direction Ω with energy E, and<br />

S( r ', Ω,<br />

E)<br />

is the neutron source at point r’ of direction Ω with energy E. In the above equation,<br />

while the fission neutron source is not expressed explicitly, it may be included in the source term.<br />

Here, we assume that the scattering and the source are isotropic;<br />

1<br />

Σ s ( r,<br />

Ω'<br />

→ Ω,<br />

E'<br />

→ E)<br />

= Σ s ( r,<br />

E'<br />

→ E)<br />

4π<br />

,<br />

(7.1-2a)<br />

1<br />

S( r,<br />

Ω , E)<br />

= S(<br />

r,<br />

E)<br />

(7.1-2b)<br />

4π<br />

Integrating Eq.(7.1-1) over the whole angle of Ω , we obtain,<br />

1<br />

( , ) = ∞<br />

Ω exp( − Σ )<br />

⎡<br />

' Σ ( ', ' → ) ( ', ')<br />

+ ( ', )<br />

⎤<br />

4 4 0<br />

⎢⎣ ∫<br />

∞<br />

ϕ r E ∫ d ∫ dR R dE s r E E ϕ r E S r E<br />

π π<br />

0<br />

⎥⎦<br />

where ϕ ( r,<br />

E)<br />

is the neutron flux at point r with E, and is defined by<br />

,<br />

(7.1-3)<br />

∫<br />

ϕ( r , E)<br />

= dΩ<br />

ϕ(<br />

r,<br />

Ω,<br />

E)<br />

(7.1-4)<br />

π<br />

4<br />

Equation (7.1-3) can be rewritten by the relation<br />

2<br />

dr<br />

' = R dRdΩ<br />

∞<br />

Σ(<br />

r,<br />

E)<br />

ϕ(<br />

r,<br />

E)<br />

= ' ( ' → , )<br />

⎡<br />

' Σ ( ', ' → ) ( ', ')<br />

+ ( ', )<br />

⎤<br />

∫ dr<br />

P r r E<br />

⎢⎣ ∫ dE s r E E ϕ r E S r E<br />

0 ⎥⎦<br />

,<br />

(7.1-5)<br />

where<br />

Σ(<br />

r)<br />

P(<br />

r ' → r,<br />

E)<br />

= exp<br />

⎛<br />

⎞<br />

⎜−<br />

Σ ⎟<br />

⎝ ∫ R s ( s)<br />

ds<br />

(7.1-6)<br />

2<br />

4πR<br />

0 ⎠<br />

By the <strong>for</strong>m of Eq.(7.1-6), the reciprocity relation holds,<br />

Σ( r',<br />

E)<br />

P(<br />

r'<br />

→ r,<br />

E)<br />

= Σ(<br />

r,<br />

E)<br />

P(<br />

r → r',<br />

E)<br />

(7.1-7)<br />

We divide the whole system under consideration in<strong>to</strong> several regions. Each region is assumed<br />

homogeneous with respect <strong>to</strong> its nuclear properties, but different regions are not necessarily of<br />

different materials. The region is the spatial variable in the collision probability method. We denote<br />

space dependent cross sections with subscript i which are associated <strong>to</strong> the region i. Integrating<br />

Eq.(7.1-5) over V j , we obtain<br />

Σ ( E)<br />

j<br />

∫<br />

V j<br />

∞<br />

ϕ ( r,<br />

E)<br />

dr<br />

= dr<br />

dr'<br />

⎡<br />

s ( r',<br />

E'<br />

E)<br />

( r',<br />

E'<br />

) dE'<br />

S(<br />

r',<br />

E)<br />

⎤<br />

∑∫<br />

⋅ P(<br />

r'<br />

→ r,<br />

E) .<br />

V ∫ Σ →<br />

+<br />

j Vi<br />

⎢⎣ ∫<br />

ϕ<br />

(7.1-8)<br />

0<br />

⎥⎦<br />

i<br />

We make the flat flux approximation so that the neutron flux ϕ ( r,<br />

E)<br />

is assumed constant in<br />

223

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!