26.10.2014 Views

JAEA-Data/Code 2007-004 - Welcome to Research Group for ...

JAEA-Data/Code 2007-004 - Welcome to Research Group for ...

JAEA-Data/Code 2007-004 - Welcome to Research Group for ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

In Fig.7.1-5, the line PQ’ defined by ρ and ϕ is the projection of the neutron line PQ on the<br />

horizontal plane. The points P and Q are, respectively, the source and collision positions. The point A<br />

is the origin of measures of t, t’ and s. The points B, C, D and E are the points of intersection of the<br />

line PQ’ with the region boundaries. A restriction on the moving direction of a neutron is imposed so<br />

that a neutron moves only <strong>to</strong> the positive direction of t along the line PQ’. If the line PQ’ enters the<br />

region j more than once, a sum of Eq.(7.1-66) is required.<br />

The self collision probability, P ii is expressed by the following Eq.(7.1-67), where the point Q is<br />

in the region i.<br />

P<br />

ii<br />

⎡<br />

= ⎢<br />

⎢⎣<br />

+∞<br />

∫ ρdρ∫ dϕ∫ sinθdθ∫<br />

−∞<br />

⎡<br />

⎢⎣<br />

+∞<br />

∫ ρdρ∫ dϕ∫ sinθdθ∫<br />

−∞<br />

2π<br />

0<br />

2π<br />

0<br />

π / 2<br />

0<br />

π / 2<br />

0<br />

AC<br />

AB<br />

dt<br />

AC<br />

AB<br />

∫<br />

t<br />

AC<br />

dt<br />

⎤<br />

⎥⎦<br />

Σ ⎪⎧<br />

Σ t − t'<br />

⎪⎫<br />

⎤<br />

i<br />

i<br />

dt'<br />

exp⎨−<br />

⎬⎥<br />

sinθ<br />

⎪⎩ sinθ<br />

⎪⎭ ⎥⎦<br />

(7.1-67)<br />

If the line PQ’ reenters the region i, a sum of such a term as Eq.(7.1-66) is also required <strong>for</strong> obtaining<br />

P ii .<br />

The six-fold integrals of Eqs.(7.1-66) and (7.1-67) are reduced <strong>to</strong> the double integrals as<br />

follows:<br />

P<br />

ij<br />

i<br />

i<br />

{ K ( λ ) − K ( λ + λ ) − K ( λ + λ ) + K ( λ + λ + λ }<br />

1 +∞ 2π<br />

=<br />

Σ<br />

∫ dρ<br />

−∞ ∫ dϕ<br />

i3<br />

0 i3<br />

0 i i3<br />

0 j i3<br />

0 i j ) , (7.1-68)<br />

2π<br />

V<br />

0<br />

P<br />

ii<br />

1 +∞ 2π<br />

=<br />

Σ<br />

∫ dρ<br />

−∞ ∫ dϕ<br />

i i3<br />

i3<br />

i )<br />

2π<br />

V<br />

0<br />

i<br />

i<br />

{ λ − K (0) + K ( λ }<br />

, (7.1-69)<br />

where λ i and λ j denote the optical path lengths (the physical path multiplied by the macroscopic <strong>to</strong>tal<br />

cross section), λ i =BC*Σ i , λ j =DE*Σ j and λ 0 stands <strong>for</strong> the sum of optical path lengths between C and<br />

D; and K i3 is the third order Bickley-Naylor function.<br />

The escape probability P is defined as a neutron emitted in the region i escapes from the surface<br />

without suffering collision, is expressed as<br />

P<br />

is<br />

1 +∞ 2π<br />

=<br />

Σ ∫ dρ<br />

−∞ ∫ dϕ<br />

i3<br />

is i3<br />

is i )<br />

2π<br />

V<br />

0<br />

i<br />

i<br />

{ K ( λ ) − K ( λ + λ }<br />

, (7.1-70)<br />

where λ is is the optical path length along the line from the edge of the region i <strong>to</strong> the surface of the<br />

system.<br />

As <strong>for</strong> the directional probabilities, similarly <strong>to</strong> the case of the one-dimensional cylinder, it is<br />

not necessary <strong>to</strong> write the whole components and hence a few samples are shown here:<br />

P<br />

ijr<br />

{ K ( λ ) − K ( λ + λ ) − K ( λ + λ ) + K ( λ + λ + λ }<br />

3 +∞ 2π<br />

=<br />

Σ<br />

∫ dρ<br />

−∞ ∫ dϕ<br />

i5<br />

0 i5<br />

0 i i5<br />

0 j i5<br />

0 i j )<br />

4π<br />

V<br />

0<br />

i<br />

i<br />

(7.1-71)<br />

239

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!