26.10.2014 Views

JAEA-Data/Code 2007-004 - Welcome to Research Group for ...

JAEA-Data/Code 2007-004 - Welcome to Research Group for ...

JAEA-Data/Code 2007-004 - Welcome to Research Group for ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

ϕ<br />

i ( 0<br />

u ) = ∑ Pij<br />

( u)<br />

W j ( u)<br />

X j / X j ( u)<br />

j<br />

, (7.3.3-1)<br />

W j ( u)<br />

= S j ( u)<br />

/ Σ 0 j<br />

, (7.3.3-2)<br />

X<br />

0 j ( 0 j<br />

j j u<br />

u)<br />

= l jΣ<br />

, X = l jΣ<br />

( ) , (7.3.3-3)<br />

where the subscript j denotes a spatial region j, S j (u) the slowing-down source,<br />

length, Σ 0j , the non-resonance part of Σ j (u) and the other notation is conventional.<br />

l j , the mean chord<br />

Now, let us consider the limit at which the resonance cross-section of one resonant iso<strong>to</strong>pe, say<br />

σ t , tends <strong>to</strong> be infinite. This black limit corresponds <strong>to</strong> a physical situation encountered near a<br />

resonance energy. Then, all the macroscopic cross-sections of the region with the resonance iso<strong>to</strong>pe<br />

under consideration will also tend <strong>to</strong> be infinite. We denote these regions by the symbol R.<br />

64), 65) show<br />

General arguments on asymp<strong>to</strong>tic behaviors of the collision probability, P ij , at the black limit 27),<br />

P ( σ ) ≡ P ( u)<br />

→ δ − γ / X ( i ∈ R)<br />

<strong>for</strong> X → ∞<br />

(7.3.3-4)<br />

ij<br />

t<br />

ij<br />

ij<br />

ij<br />

i<br />

i<br />

with γ ij ≡ lim { δ ij − P ij ( σ t )} X i<br />

σ<br />

t →∞<br />

. (7.3.3-5)<br />

From the conservation law<br />

∑<br />

j<br />

P ≡1<br />

ij<br />

(7.3.3-6)<br />

we have<br />

∑<br />

j<br />

γ<br />

ij<br />

≡ 0<br />

or<br />

γ<br />

ii<br />

= −<br />

∑<br />

j≠i<br />

γ<br />

ij<br />

. (7.3.3-7)<br />

There<strong>for</strong>e, we have <strong>for</strong> the flux ϕ ( u)<br />

( i ∈ R)<br />

i<br />

−2<br />

( X ) <strong>for</strong> X → ∞<br />

⎛<br />

⎞<br />

⎜ ∞<br />

∞<br />

ϕ ⎟<br />

i<br />

( u)<br />

→ W −<br />

+<br />

i<br />

X<br />

0i<br />

∑W<br />

j<br />

X<br />

0 jγ<br />

ij<br />

/ X<br />

j<br />

X<br />

i<br />

O<br />

i<br />

i<br />

(7.3.3-8)<br />

⎝<br />

j∉R<br />

⎠<br />

∞ ≡<br />

σ →∞<br />

W j lim W j<br />

t<br />

. (7.3.3-9)<br />

Here, since we try <strong>to</strong> treat the higher energy region, say E ≥ several hundred eV, the NRA is a<br />

reasonable approximation, i.e.,<br />

W j<br />

( u)<br />

= const.<br />

≡ 1<br />

. (7.3.3-10)<br />

Moreover, we assume that accidental overlapping between different resonance sequences is negligible,<br />

255

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!