26.10.2014 Views

JAEA-Data/Code 2007-004 - Welcome to Research Group for ...

JAEA-Data/Code 2007-004 - Welcome to Research Group for ...

JAEA-Data/Code 2007-004 - Welcome to Research Group for ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

If we assume the cylindricalized cell with the perfect reflective outer boundary, more terms like<br />

those in Eq.(7.1-46) are required as follows;<br />

K<br />

i3<br />

+ K<br />

( λ ) − K<br />

i3<br />

( λ ) − K<br />

+ ............................................................................................<br />

+ K<br />

i3<br />

3<br />

ij<br />

4<br />

ij<br />

n<br />

ij<br />

i3<br />

( λ ) − K<br />

( λ + λ ) − K<br />

i3<br />

i3<br />

3<br />

ij<br />

4<br />

ij<br />

( λ + λ ) − K<br />

n<br />

ij<br />

( λ + λ ) − K<br />

( λ + λ ) + K<br />

( λ + λ ) + K<br />

( λ + λ ) + K<br />

( λ + λ + λ )<br />

( λ + λ + λ )<br />

( λ + λ + λ )<br />

+ ...........................................................................................<br />

where<br />

3<br />

λij<br />

= λij<br />

+ λ j + 2<br />

4 2<br />

λ = λ + λ + 2<br />

ij<br />

n<br />

ij<br />

1<br />

ij<br />

λ = λ<br />

n−2<br />

ij<br />

j<br />

∑<br />

∑<br />

+ λ + 2<br />

j<br />

N<br />

k<br />

k = i+<br />

1<br />

N<br />

λ<br />

λ<br />

k<br />

k = i+<br />

1<br />

....................................... ,<br />

N<br />

∑<br />

i<br />

i<br />

i<br />

λ ,<br />

k<br />

k = i+<br />

1<br />

,<br />

,<br />

i3<br />

i3<br />

i3<br />

3<br />

ij<br />

4<br />

ij<br />

n<br />

ij<br />

j<br />

j<br />

j<br />

i3<br />

i3<br />

i3<br />

3<br />

ij<br />

4<br />

ij<br />

n<br />

ij<br />

i<br />

i<br />

i<br />

j<br />

j<br />

j<br />

These terms <strong>to</strong> be used in the integrand of Eq.(7.1-46) are the generalized <strong>for</strong>m of those appearing in<br />

the expression of P given by Takahashi 35) 1→2<br />

, while the integration variable has not yet been<br />

trans<strong>for</strong>med <strong>to</strong> ρ.<br />

As regards the directional probabilities in the cylindrical coordinates, we know <strong>for</strong> the axial<br />

2 2<br />

direction 3 = 3cos θ and <strong>for</strong> the radial direction 3 2 = (3/ 2) sin 2 θ . For the latter, P ijr is<br />

Ω z<br />

obtained by multiplying the integrand in Eq.(7.1-40) by<br />

here the whole expressions <strong>for</strong> each condition. It is enough <strong>for</strong> us <strong>to</strong> know only the fact that all the<br />

terms expressed by K in (x) must be replaced by (3/2)K i (n+2) (x). Similarly <strong>to</strong> the slab system, the<br />

following relation holds:<br />

Ω r<br />

(3/ 2)sin<br />

2 θ . It is not worth while <strong>to</strong> repeat<br />

P<br />

ij<br />

1 2<br />

= Pijz<br />

+ Pijr<br />

(7.1-53)<br />

3 3<br />

We know that the isotropic boundary condition brings more accurate result and is less<br />

time-consuming than the perfect reflective boundary condition <strong>to</strong> evaluate the flux distribution in the<br />

real cell by the cylindricalized model. In this case the probability, P is that a neutron emitted in the shell<br />

i escapes from the outer boundary without suffering any collision is required. It is easily obtained as<br />

P<br />

is<br />

2<br />

=<br />

Σ V<br />

i<br />

i<br />

r i<br />

1<br />

1<br />

2<br />

2<br />

{ K ( λ ) − K ( λ + λ ) + K ( λ ) − K ( λ λ }<br />

∫ dρ i3 is i3<br />

is i i3<br />

is i3<br />

is + i ) , (7.1-54)<br />

0<br />

234

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!