26.10.2014 Views

JAEA-Data/Code 2007-004 - Welcome to Research Group for ...

JAEA-Data/Code 2007-004 - Welcome to Research Group for ...

JAEA-Data/Code 2007-004 - Welcome to Research Group for ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

The integration by R between R j- and R j+ in Eq.(7.1-13) can be per<strong>for</strong>med analytically in the<br />

homogeneous region j,<br />

∫<br />

R<br />

R<br />

j +<br />

j −<br />

dRΣ<br />

j<br />

exp( −ΣR)<br />

= exp( −ΣR<br />

j−<br />

= exp( −ΣR)<br />

) ×<br />

R=<br />

R<br />

{<br />

j −<br />

1 − exp<br />

−<br />

( − Σ ( R − R ))}<br />

exp( −ΣR)<br />

The summation over j along the direction Ω leaves only the first term of exp( Σ R ) 0 = 1,<br />

then the<br />

conservation law is easily shown as,<br />

∑<br />

j<br />

j<br />

j+<br />

R=<br />

R<br />

j +<br />

j−<br />

− R=<br />

1<br />

P = Ω = 1<br />

4<br />

∫ ∫<br />

ij d d<br />

πV<br />

r (7.1-15)<br />

V i 4π<br />

i<br />

Similarly, the directional probabilities P ijk defined by Benoist 25) which is used <strong>to</strong> provide the<br />

Behrens term of the anisotropic diffusion coefficients is expressed by<br />

P<br />

ijk<br />

= 1<br />

R<br />

2 j +<br />

Ω3Ω<br />

Σ exp<br />

⎛<br />

( )<br />

⎞<br />

⎜−<br />

Σ ⎟ ,<br />

4<br />

∫ ∫4<br />

∫<br />

⎝ ∫<br />

R<br />

dr d k dR j<br />

s ds<br />

(7.1-16)<br />

πV<br />

Vi<br />

π<br />

R j −<br />

0 ⎠<br />

i<br />

where k stands <strong>for</strong> direction, <strong>for</strong> example the parallel or perpendicular <strong>to</strong> the boundary plane in the<br />

case of plane lattice, and Ω k denotes the directional cosine of Ω in the direction k. The following<br />

relation holds:<br />

2<br />

∑ Ω =<br />

k<br />

k 1<br />

, (7.1-17)<br />

The extension <strong>to</strong> include surfaces given by Beardwood 43) is as follows: If S is any surface (not<br />

necessarily closed) such that no line drawn outwards from a surface point S crosses S more once,<br />

P<br />

is<br />

( − S )<br />

= 1 r ⎛<br />

∫ dr∫<br />

d S exp⎜<br />

−<br />

V<br />

⎝ ∫<br />

V<br />

3<br />

4π<br />

i R<br />

i<br />

s<br />

0<br />

R<br />

s<br />

Σ(<br />

s)<br />

ds<br />

⎞<br />

⎟<br />

(7.1-18)<br />

⎠<br />

is the probability that a neutron emitted from the region i crosses the outer boundary S, or an<br />

alternative expression,<br />

P<br />

is<br />

= 1<br />

⎛<br />

⎞<br />

∫ ∫ Ω ⎜−<br />

Σ ⎟<br />

⎝ ∫<br />

Rs<br />

dr d exp ( s)<br />

ds<br />

(7.1-19)<br />

4πV<br />

Vi<br />

4π<br />

0 ⎠<br />

i<br />

is given, where R s is a distance from the emitting point r <strong>to</strong> the surface point S .<br />

The isotropic reflective boundary condition is frequently used <strong>for</strong> the lattice cell calculation not<br />

only in the collision probability method but also in the Sn calculation. We shall describe its physical<br />

meaning and the application in the collision probability method using the explanation given by<br />

Bonalumi 48) .<br />

225

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!