26.10.2014 Views

JAEA-Data/Code 2007-004 - Welcome to Research Group for ...

JAEA-Data/Code 2007-004 - Welcome to Research Group for ...

JAEA-Data/Code 2007-004 - Welcome to Research Group for ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

each region, <strong>for</strong> example, it is expressed by ϕ (E)<br />

in the region i. This assumption leads the<br />

equation,<br />

i<br />

Σ ( E ) V ϕ ( E)<br />

=<br />

⎡<br />

)<br />

⎤<br />

j<br />

j<br />

j<br />

∞<br />

∑ Pi<br />

j ( E)<br />

Vi<br />

⎢⎣ ∫ Σ s i ( E'<br />

→ E)<br />

ϕi<br />

( E)<br />

dE'<br />

+ Si<br />

( E<br />

0<br />

⎥⎦<br />

i<br />

(7.1-9)<br />

where the collision probability P i j (E) is defined by<br />

P<br />

i j<br />

Σ j ( E)<br />

( E)<br />

= d<br />

4 V<br />

∫ r<br />

π ∫<br />

i<br />

V j V i<br />

exp( −ΣR)<br />

dr'<br />

2<br />

R<br />

(7.1-10)<br />

It is explained as the probability that a neutron emitted uni<strong>for</strong>mly and isotropically in the region i has<br />

its next collision in the region j. We divide the neutron energy range in<strong>to</strong> multi-groups. The average<br />

flux in the energy interval<br />

simultaneous equation,<br />

ΔE g<br />

is denoted by<br />

ϕ ig<br />

. Then from Eq.(7.1-9), we obtain the<br />

ΔE<br />

g<br />

Σ<br />

jg<br />

V ϕ<br />

j<br />

jg<br />

=<br />

∑<br />

i<br />

P<br />

ijg<br />

⎡<br />

Vi<br />

⎢<br />

⎢⎣<br />

∑<br />

g'<br />

ΔE<br />

g'<br />

Σ<br />

s i g'<br />

→g<br />

ϕ<br />

i g'<br />

+ ΔE<br />

S<br />

g<br />

ig<br />

⎤<br />

⎥<br />

⎥⎦<br />

(7.1-11)<br />

E g<br />

E g '<br />

where Δ and Δ are the energy width of the group g and g’ and<br />

cross-section in the region i from the group g’ <strong>to</strong> g, and is defined by<br />

Σ ' is the scattering<br />

s i g →g<br />

Σ = dE'<br />

dE Σ ( E'<br />

→ E)<br />

ϕ ( E'<br />

) dE'<br />

ϕ ( E'<br />

)<br />

(7.1-12)<br />

s i g'<br />

→g<br />

∫<br />

ΔEg'<br />

∫<br />

ΔEg<br />

si<br />

i<br />

As seen in the above derivation, once we obtain the collision probabilities, the neutron flux can<br />

be easily obtained by solving the simultaneous equation Eq.(7.1-11) by means of a matrix inversion or<br />

an iterative process.<br />

Now we focus our considerations on the collision probability. The definition of the collision<br />

probability Eq.(7.1-10) can be expressed equivalently by<br />

∫<br />

ΔEg<br />

'<br />

i<br />

P<br />

ij<br />

= 1<br />

R j +<br />

⎛ ⎞<br />

∫ ∫ Ω∫<br />

Σ ⎜−<br />

Σ ⎟<br />

⎝ ∫<br />

R<br />

dr d dR j exp ( s)<br />

ds<br />

(7.1-13)<br />

4πV<br />

Vi 4π<br />

R j −<br />

0 ⎠<br />

i<br />

where the subscript <strong>to</strong> indicate the energy group is, hereafter, dropped <strong>for</strong> simplicity, and R j- and R j+<br />

denote the distances from point r <strong>to</strong> the inner and outer boundaries of the region j along the line<br />

through the points r and r'.<br />

From the <strong>for</strong>m of Eq.(7.1-10), it can be seen easily that the reciprocity relation holds,<br />

P Σ V = P Σ V<br />

(7.1-14)<br />

ji<br />

j<br />

j<br />

ij<br />

i<br />

i<br />

This relation is, as shown later, utilized <strong>to</strong> reduce the angular range of numerical integration.<br />

224

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!