18.11.2014 Views

T 7.2.1.3 Amplitude Modulation

T 7.2.1.3 Amplitude Modulation

T 7.2.1.3 Amplitude Modulation

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

TPS <strong>7.2.1.3</strong><br />

Review<br />

3 Review of amplitude modulation<br />

In amplitude modulation (AM) the momentary<br />

value of the message signal s M (t) has an<br />

immediate effect on the amplitude of the carrier<br />

oscillation s C (t). This takes place in a modulator,<br />

see Fig.3-1.<br />

Here it would be:<br />

s C<br />

(t) = A C<br />

cos (2 π f C<br />

t) (3-1)<br />

for the high-frequency carrier and:<br />

1. s M<br />

(t) = A M<br />

cos (2 π f M<br />

t) (3-2)<br />

for the low frequency message signal. The combining<br />

of the carrier and message signal in the<br />

modulator then provides the following modulation<br />

product:<br />

s AM<br />

(t) = [A C<br />

+ α s M<br />

(t)] cos (2 π f C<br />

t) (3-3)<br />

= [A C<br />

+ α A M<br />

cos (2 π f M<br />

t)]<br />

cos (2 π f C<br />

t).<br />

Where α stands for the modulator constant, which<br />

expresses the affect of the message signal s M (t)<br />

on the amplitude A C of the carrier. Normally (3-3)<br />

is described in more general terms. For this you<br />

need the following definitions:<br />

∆A C<br />

= α A M<br />

<strong>Amplitude</strong> deviation (3-4)<br />

A<br />

m = ∆ C<br />

A<br />

C<br />

<strong>Modulation</strong> index (3-5)<br />

<strong>Amplitude</strong> deviation ∆A C describes the maximum<br />

change away from the original value A C in the carrier<br />

amplitude. The modulation index m reproduces<br />

the ratio of the amplitude deviation to the carrier<br />

Fig. 3-1: Generation of amplitude modulation<br />

amplitude. Thus it is possible to convert (3-3) as<br />

follows:<br />

⎡ ∆A<br />

⎤<br />

C<br />

sAM<br />

( t) = A ⎢<br />

C 1+ cos( 2π<br />

fMt)<br />

⎥cos<br />

2π<br />

fCt<br />

⎢<br />

⎣<br />

A<br />

⎥<br />

C<br />

⎦<br />

A 1 mcos<br />

2π<br />

f t cos 2π<br />

f t<br />

C M C<br />

( )<br />

[ ] ( )<br />

= + ( )<br />

(3-6)<br />

Fig. 3-2 shows the amplitude modulated signal according<br />

to (3-6). The modulating signal s M (t) can<br />

be recognized in the envelope curve.<br />

Normally the following holds true: 0 < m < 1.<br />

The following limiting cases for m are interesting:<br />

m = 0 : no modulation effect<br />

m = 1 : full modulation, the envelopes bordering<br />

the modulating signal just touch at their<br />

minimum values<br />

m > 1 : overmodulation, the envelopes permeate<br />

each other, modulation distortion arises.<br />

m = 0%<br />

A C<br />

s AM<br />

T C<br />

Envelope<br />

∆A C<br />

∆A C<br />

m = 100%<br />

T M<br />

Envelope<br />

m > 100%<br />

Fig. 3-2: The amplitude modulated signal<br />

Fig. 3-3: Limiting cases for the modulation factor<br />

23

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!