13.07.2015 Views

Measurement of the Jet Energy Scale in the CMS experiment ... - IIHE

Measurement of the Jet Energy Scale in the CMS experiment ... - IIHE

Measurement of the Jet Energy Scale in the CMS experiment ... - IIHE

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

CHAPTER 5: Estimat<strong>in</strong>g <strong>of</strong> <strong>the</strong> <strong>Jet</strong> <strong>Energy</strong> <strong>Scale</strong> Calibration Factor 103∆ε expl(%) ∆ε estl(%) ∆ε estl− ∆ε expl(%)nom<strong>in</strong>al -9.38±0.25 -8.75±0.14 0.63±0.29larger ISR/FSR -8.85±0.26 -8.12±0.14 0.73±0.29smaller ISR/FSR -9.62±0.25 -9.13±0.14 0.49±0.29∆ε expb(%) ∆ε estb(%)∆ε estb− ∆ε expb(%)nom<strong>in</strong>al -2.66±0.36 -2.81±0.20 -0.15±0.41larger ISR/FSR -2.54±0.37 -2.68±0.20 -0.14±0.42smaller ISR/FSR -1.85±0.39 -2.49±0.20 0.64±0.44Table 5.9: The expected and estimated residual jet energy corrections and <strong>the</strong> bias on<strong>the</strong> estimations for <strong>the</strong> samples with larger and smaller amount <strong>of</strong> radiation comparedto <strong>the</strong> nom<strong>in</strong>al.S<strong>in</strong>ce <strong>the</strong> bias on <strong>the</strong> estimated light and b jet energy corrections is small and,<strong>in</strong> some cases, is compatible with zero with<strong>in</strong> <strong>the</strong> statistical uncerta<strong>in</strong>ties, it can bededuced that <strong>the</strong> method is stable with respect to changes <strong>in</strong> ISR/FSR. The estimatedlight jet energy correction changes from -8.12%, correspond<strong>in</strong>g to <strong>the</strong> sample withlarger ISR/FSR, to -9.13%, which is obta<strong>in</strong>ed when consider<strong>in</strong>g smaller amount <strong>of</strong>ISR/FSR <strong>in</strong> <strong>the</strong> simulation procedure. Compared to <strong>the</strong> nom<strong>in</strong>al value which equals-8.75%, <strong>the</strong> maximum deviation <strong>of</strong> <strong>the</strong> estimated light jet energy correction is takenas <strong>the</strong> systematic uncerta<strong>in</strong>ty due to <strong>the</strong> ISR/FSR, be<strong>in</strong>g 0.63%. In case <strong>of</strong> b jets, <strong>the</strong>maximum deviation would reach to 0.32% which is quoted as <strong>the</strong> systematic uncerta<strong>in</strong>tyon <strong>the</strong> estimated b jet energy correction due to <strong>the</strong> ISR/FSR.<strong>Scale</strong> Factor Q 2As already mentioned, <strong>the</strong> <strong>in</strong>itial and f<strong>in</strong>al state radiations are governed by <strong>the</strong> use <strong>of</strong><strong>the</strong> DGLAP equation which describes <strong>the</strong> evolution <strong>of</strong> <strong>the</strong> partonic distribution functionas a function <strong>of</strong> <strong>the</strong> factorization scale Q 2 . Accord<strong>in</strong>g to <strong>the</strong> DGLAP equation, <strong>the</strong> f<strong>in</strong>alstate radiation <strong>in</strong> an event can be started from a maximum energy state Q 2 max, whichis chosen to be <strong>the</strong> squared mass <strong>of</strong> <strong>the</strong> parton shower <strong>in</strong>itiator, down to smaller values<strong>of</strong> <strong>the</strong> Q 2 scale. S<strong>in</strong>ce <strong>the</strong> chosen value used for <strong>the</strong> Q 2 max parameter might not be <strong>the</strong>optimal choice for <strong>the</strong> description <strong>of</strong> observed proton-proton collision data, <strong>the</strong> effects <strong>of</strong>alter<strong>in</strong>g <strong>the</strong> Q 2 value up and downwards are taken <strong>in</strong>to account. Therefore, additionalsamples are simulated for which <strong>the</strong> <strong>in</strong>itial <strong>in</strong>put variable <strong>of</strong> <strong>the</strong> Q 2 max parameter ischanged with<strong>in</strong> an <strong>in</strong>terval. Then, <strong>in</strong> order to check <strong>the</strong> effects <strong>of</strong> <strong>the</strong> variation <strong>of</strong><strong>the</strong> Q 2 scale, <strong>the</strong> method <strong>of</strong> estimat<strong>in</strong>g <strong>the</strong> residual jet energy corrections is appliedon both simulated samples with <strong>the</strong> various sett<strong>in</strong>gs <strong>of</strong> <strong>the</strong> Q 2 parameters and <strong>the</strong>nom<strong>in</strong>al sample which is simulated with <strong>the</strong> pre-def<strong>in</strong>ed sett<strong>in</strong>g <strong>of</strong> <strong>the</strong> Q 2 parameter.The results <strong>of</strong> <strong>the</strong> estimated and expected residual jet energy corrections on differentsett<strong>in</strong>gs <strong>of</strong> <strong>the</strong> Q 2 scale are summarized and a possible bias <strong>of</strong> <strong>the</strong> method is calculated

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!