27.01.2014 Views

caracterizarea bazata pe cunoastere a capacitatii de amortizare

caracterizarea bazata pe cunoastere a capacitatii de amortizare

caracterizarea bazata pe cunoastere a capacitatii de amortizare

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

36<br />

( x, y, z)<br />

energie repulsiva ion-core (Born-Mayer) ;<br />

l parametru a energiei repulsive;<br />

2α volumul celulei elementare.<br />

. Ecuatiile constitutive <strong>pe</strong>ntru un material isotrop centrosimetric <strong>de</strong> tip Cosserat sunt (Lakes<br />

1982, Chiroiu, Munteanu si Dumitriu 2008)<br />

σ<br />

kl<br />

=λerrδ kl<br />

+ (2 µ +κ ) ekl +κεklm( rm −ϕ<br />

m)<br />

, m<br />

kl<br />

=αϕr, rδ kl<br />

+βϕ<br />

k, l<br />

+ γϕ<br />

l,<br />

k<br />

, (1.2.1)<br />

In (1.2.1) sase constante elastice ind<strong>pe</strong>n<strong>de</strong>nte <strong>de</strong>scriu comportarea solidului isotrop<br />

centrosimetric Coserat. Pentru un corp isotrop non-centrosymmetric <strong>de</strong> tip Cosserat, energia <strong>de</strong><br />

<strong>de</strong>formatie si tensorul <strong>de</strong>formatie se scriu sub forma<br />

si<br />

= ε ε + ϕ ϕ + ε ϕ , (1.2.2)<br />

2V Cklmn kl mn<br />

Bklmn k , l m, n<br />

Aklmn kl m,<br />

n<br />

ε = e +ε ( r −ϕ ). (1.2.3)<br />

kl kl klm m m<br />

Tensiunile si cuplele <strong>de</strong> tensiuni se obtin din<br />

∂V<br />

σ = , ∂ε<br />

kl<br />

kl<br />

m<br />

kl<br />

∂V<br />

= . (1.2.4)<br />

∂ϕ<br />

Din (1.2.3) si (1.2.4) obtinem ecuatiile constitutive <strong>pe</strong>ntru un corp isotropic noncentrosimetric<br />

<strong>de</strong> tip Cosserat<br />

sau<br />

σ<br />

kl<br />

= Cklmnε mn<br />

+ Aklmnϕ m,<br />

n<br />

, mkl Bklmn m,<br />

n<br />

Aklmn mn<br />

l,<br />

k<br />

= ϕ + ε . (1.2.5)<br />

σ = ε δ + ε + ε + ϕ δ + ϕ + ϕ (1.2.6)<br />

kl<br />

C1 rr kl<br />

C2 kl<br />

C3 lk<br />

A1 r, r kl<br />

A2 k, l<br />

A3 l, k,<br />

un<strong>de</strong><br />

m = Bϕ δ + B ϕ + B ϕ + Aε δ + A ε + Aε , (1.2.7)<br />

kl 1 r, r kl 2 l, k 3 k, l 1 rr kl 2 lk 3 kl<br />

C<br />

1<br />

=λ, C<br />

2<br />

= µ , C<br />

3<br />

=κ, B<br />

1<br />

=α, B<br />

2<br />

= β , B<br />

3<br />

= γ , A1 = C1, A2 = C2, A3 = C3,<br />

Ecuatiile constitutive (1.2.6) si (1.2.7) conduc la<br />

σ =λe δ + (2 µ +κ ) e +κε ( r −ϕ ) + Cϕ δ + C ϕ + C ϕ , (1.2.8)<br />

kl rr kl kl klm m m 1 r, r kl 2 k, l 3 l,<br />

k<br />

m =αϕ δ +βϕ + γϕ + C e δ + ( C + C ) e + ( C −C ) ε ( r −ϕ ). (1.2.9)<br />

kl r, r kl k , l l, k 1 rr kl 2 3 kl 3 2 klm m m<br />

Ecuatiile (1.2.9) reprezinta ecuatiile constitutive <strong>pe</strong>ntru un corp <strong>de</strong> tip Cosserat care se<br />

comporta isotropic in raport cu o rotatie a sistemului <strong>de</strong> referinta dar nu in raport cu o inversie.<br />

Constantele chirale Ci<br />

, i= 1, 2,3 caracterizeaza noncentrosimetria. Pentru C<br />

i<br />

= 0 se reobtin<br />

ecuatiile elasticitatii isotro<strong>pe</strong> micropolare. Pentru α=β = γ =κ= 0 , ecuatiile (1.2.8) and (1.2.9)<br />

se reduc la ecuatiile constitutive ale teoriei elasticitatiii liniare isotro<strong>pe</strong>.<br />

Conditiile <strong>pe</strong> frontiera sunt date <strong>de</strong><br />

σ<br />

lknl = t( n)<br />

k<br />

, mn<br />

lk l<br />

m( n)<br />

k<br />

Legea <strong>de</strong> miscare este in<strong>de</strong><strong>pe</strong>n<strong>de</strong>nta <strong>de</strong> simetria materiala. Avem<br />

= . (1.2.10)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!