03.04.2013 Views

Advanced Research WRF (ARW) Technical Note - MMM - University ...

Advanced Research WRF (ARW) Technical Note - MMM - University ...

Advanced Research WRF (ARW) Technical Note - MMM - University ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

The operator vertically interpolates variables on mass levels k to the w levels (k + 1).<br />

It should<br />

2<br />

be noted that the vertical grid is defined such that vertical interpolation from w levels to mass<br />

levels reduces to a η<br />

k = (ak+1/2 + ak−1/2)/2 (see Fig. 3.2).<br />

The RHS terms in the discrete acoustic step equations for momentum (3.21), (3.22) and<br />

(3.25) are discretized as<br />

R t∗<br />

U = − (µd x α x δxp ′ − µd x α ′xδx¯p) − (α/αd) x<br />

(µd x δxφ ′η − δηp ′xηδxφ<br />

η + µ ′ x<br />

d δxφ η )<br />

+ FUcor + advection + mixing + physics (3.29)<br />

R t∗<br />

V = − (µd y α y δyp ′ − µd y α ′yδy ¯p) − (α/αd) y<br />

(µd y δyφ ′η − δηp ′yηδyφ<br />

η + µ ′ y<br />

d δyφ η )<br />

+ FVcor + advection + mixing + physics<br />

R<br />

(3.30)<br />

t∗<br />

W = m −1 g(α/αd) η<br />

[δηp ′ + ¯µdqm η ] − m −1 µ ′ dg<br />

+ FWcor + advection + mixing + buoyancy + physics. (3.31)<br />

3.2.2 Coriolis and Curvature Terms<br />

The terms FUcor, FVcor, and FWcor in (3.29) – (3.31) represent Coriolis and curvature effects<br />

in the equations. These terms in continuous form are given in (2.32) – (2.34). Their spatial<br />

discretization is<br />

Here the operators () xy<br />

3.2.3 Advection<br />

FUcor = + f x + uxδym − vyδxm x xy x xη<br />

V − e W cos αr x xη<br />

uW<br />

−<br />

FVcor = − f y + uxδym − vyδxm y xy y yη y vW<br />

U + e W sin αr − yη<br />

re<br />

FWcor = +e(U xη cos αr − V yη xη xη yη yη <br />

u U + v V<br />

sin αr) +<br />

.<br />

= () xy<br />

, and likewise for () xη<br />

and () yη<br />

.<br />

The advection terms in the <strong>ARW</strong> solver are in the form of a flux divergence and are a subset of<br />

the RHS terms in equations (3.13) – (3.18):<br />

R t∗<br />

Uadv = − m[∂x(Uu) + ∂y(V u)] + ∂η(Ωu) (3.32)<br />

R t∗<br />

Vadv = − m[∂x(Uv) + ∂y(V v)] + ∂η(Ωv) (3.33)<br />

R t∗<br />

µadv = − m2 [Ux + Vy] + mΩη (3.34)<br />

R t∗<br />

Θadv = − m2 [∂x(Uθ) + ∂y(V θ)] − m∂η(Ωθ) (3.35)<br />

R t∗<br />

Wadv = − m[∂x(Uw) + ∂y(V w)] + ∂η(Ωw) (3.36)<br />

R t∗<br />

φadv<br />

re<br />

= − µ−1<br />

d [m2 (Uφx + V φy) + mΩφη]. (3.37)<br />

For the mass conservation equation, the flux divergence is discretized using a 2nd-order centered<br />

approximation:<br />

R t∗<br />

µadv = −m2 [δxU + δyV ] t∗<br />

+ mδηΩ t∗<br />

. (3.38)<br />

18<br />

re

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!