02.06.2013 Views

String Theory Demystified

String Theory Demystified

String Theory Demystified

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

172 <strong>String</strong> <strong>Theory</strong> Demystifi ed<br />

This expression is a general expression, it’s a Taylor expansion of the superfi eld.<br />

Due to the anticommuting properties of Grassman variables θθ is the highest-order<br />

term in the expansion. It can be shown that the equation of motion for B µ is given<br />

by B µ = 0, so this is an auxiliary fi eld that plays no role in the physics. The superfi eld<br />

transforms as<br />

δY = [ εQ, Y ] = εQY<br />

µ µ µ<br />

Now recall Eq. (7.9), which gave the SUSY transformations of the boson and<br />

µ µ<br />

fermion fi elds X and ψ :<br />

δX= εψ<br />

µ µ<br />

µ α µ<br />

δψ =−iρ∂X ε<br />

We can derive these transformations by calculating δ µ<br />

Y explicitly. Using Q = (/ ∂∂θ) −<br />

A A<br />

( ρθ)<br />

α<br />

∂ , we have<br />

i A<br />

α<br />

µ α µ<br />

δY ( σ , θ) = εQ<br />

Y A<br />

⎡ ∂ α ⎤ ⎡ µ α<br />

⎤<br />

= ε ⎢ −i( ρθ) ∂ X ( σ )<br />

A α<br />

⎣∂θ<br />

⎥ + +<br />

A<br />

⎦ ⎣<br />

⎢<br />

⎦<br />

⎥<br />

∂<br />

= +<br />

∂<br />

∂<br />

µ α 1 µ α<br />

θψ ( σ ) θθ ( σ )<br />

2<br />

µ µ<br />

ε<br />

θ ψ<br />

θ ∂θ<br />

B<br />

B α B B µ α<br />

X<br />

( σ ) + θ θ B ( σ )<br />

B<br />

θ<br />

A A<br />

A<br />

α<br />

µ<br />

ε i( ρ θ)<br />

X A α<br />

∂<br />

⎡<br />

1<br />

⎤<br />

⎢<br />

⎣<br />

∂ 2<br />

⎥<br />

⎦<br />

⎡<br />

α<br />

µ α 1 µ α ⎤<br />

− ∂ + i( ρθ) ∂ θψ + i( ρθ) ∂ θθB ( σ )<br />

A α B A α<br />

⎣<br />

⎢<br />

2 ⎦<br />

⎥<br />

µµ α µ α<br />

= ε ψ ( σ ) + θ θ ( σ )<br />

θ<br />

α<br />

µ<br />

ε ( ρ θ)<br />

α<br />

∂<br />

⎡<br />

1 B B ⎤<br />

⎢<br />

B<br />

⎣ ∂ 2<br />

⎥<br />

A<br />

⎦<br />

α<br />

µ<br />

− ⎡⎣ i ∂ X + i( ρθ) ∂ θψ ⎤ A<br />

A α B ⎦<br />

To get the last step, we dropped the third-order term which is 0 due to the<br />

anticommuting nature of Grassman variables, and we dropped the fi rst term since<br />

X µ<br />

does not depend on the supercoordinates. Using the Fierz transformation<br />

We can fi nally write this as<br />

α<br />

θθ A B =− δABθθ C C<br />

1<br />

2<br />

µ µ α µ µ α µ<br />

δY = εψ + θ( iερ ∂ X + εB ) + θθ( iερ<br />

∂ ψ )<br />

α<br />

α

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!