02.06.2013 Views

String Theory Demystified

String Theory Demystified

String Theory Demystified

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

66 <strong>String</strong> <strong>Theory</strong> Demystifi ed<br />

µ<br />

Pτ has an immediate physical interpretation. It is the momentum density of the<br />

string. We integrate along the length of the string fi xing τ to get the total momentum<br />

carried by the string, which we label p µ :<br />

σ<br />

1<br />

pµ = ∫ dσP 0<br />

τ<br />

µ<br />

(3.23)<br />

The other conserved current associated with the global symmetries of the action<br />

comes from invariance under Lorentz transformations. In this case<br />

µ µ<br />

δX = ω X<br />

We can show that the lagrangian in Eq. (3.19) is invariant under a Lorentz<br />

transformation in the following way:<br />

( ) ( ) ( )<br />

µ ν<br />

µ<br />

ν<br />

=∂α( δX ) ∂ X η +∂ X ∂ δ η<br />

β µν α β ( X ) µν<br />

µ ρ ν<br />

=∂ ω α ( X ρ ) ∂ X β<br />

µ<br />

+∂ X ∂<br />

µν α β ( ν λ<br />

X λ )<br />

µ ν<br />

µ ν<br />

µ<br />

ν<br />

δ ∂ X ∂ X η = δ ∂ X ∂ X η +∂ X δ ∂ X η<br />

α β µν α β µν α<br />

β µ νν<br />

µ ρ ν<br />

ν µ λ<br />

= ω ∂ X ∂ X η + ωω ∂ X ∂ X η<br />

ρ α<br />

νρ α<br />

β<br />

β<br />

µν<br />

ν<br />

ν<br />

η ω η<br />

µλ α<br />

λ α<br />

ρ ν<br />

µ λ<br />

= ω ∂ X ∂ X + ω ∂ X ∂ X (lower indices with η )<br />

β<br />

β<br />

ρ ν<br />

ρ λ<br />

= ω ∂ X ∂ X + ω ∂ X ∂ X (relabel dummy indices µ → ρ)<br />

νρ α<br />

νρ α<br />

β<br />

β<br />

ρλ α<br />

β<br />

ρ ν<br />

ρ ν<br />

= ω ∂ X ∂ X + ω ∂ X ∂ X (relabel dummy indices λ →ν)<br />

ρν α<br />

β<br />

ρ ν<br />

ρ ν<br />

= ω ∂ X ∂ X + ω ∂ X ∂ X = 0 (antisymmetry ω =− ω )<br />

νρ α β<br />

νρ α β<br />

αββ<br />

βα<br />

So the lagrangian is invariant under a Lorentz transformation, but what are the<br />

currents? This is easy to fi nd, since<br />

LP<br />

⇒ ∂<br />

∂∂X<br />

L<br />

P<br />

µ ( α )<br />

T<br />

=−<br />

2<br />

αβ µ ν<br />

−hh ∂αX ∂βX<br />

ηµν<br />

T<br />

=−<br />

2<br />

αβ ν T<br />

−hh ∂ β X ηµν<br />

=−<br />

2<br />

αβ<br />

−hh<br />

P<br />

µν α<br />

µ µ<br />

µ µ ν<br />

Using ε Jµν= [ ∂LP/ ∂( ∂αX<br />

)] δX<br />

where δ X = ω ν X together with the antisymmetry<br />

of ω µ<br />

ν , we conclude that the Lorentz current is<br />

µν µ ν ν<br />

J = T X P − X P<br />

α<br />

µν<br />

µν<br />

µ<br />

β<br />

µ<br />

( α α ) (3.24)<br />

µν

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!