02.06.2013 Views

String Theory Demystified

String Theory Demystified

String Theory Demystified

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

74 <strong>String</strong> <strong>Theory</strong> Demystifi ed<br />

COMMUTATION RELATIONS FOR THE CLOSED STRING<br />

We will derive the commutation relation [Eq. (4.3)] for the modes explicitly, and<br />

simply state the results in the other cases. Hence we write down the left-moving<br />

modes [Eq. (2.55)] which are functions of σ +. The left-moving modes are restated<br />

here in the case of the closed string<br />

µ 2<br />

µ x µ i<br />

XL<br />

( σ, τ) = + p ( τ + σ)<br />

+<br />

2 2 2<br />

Now since σ + τ σ = + , the derivative is<br />

m e<br />

µ<br />

α<br />

s s m − im(<br />

τ+ σ)<br />

∑<br />

m≠0<br />

2<br />

∞<br />

µ s µ s µ − im(<br />

τ+ σ)<br />

s<br />

∂ + XL( σ, τ) = p + ∑αme<br />

= ∑ αme<br />

2 2 2<br />

To get the last step, we used α 0<br />

of Eq. (4.3). We have<br />

m≠0<br />

µ µ<br />

= ( s/<br />

2)<br />

∞<br />

⎡ s<br />

[ ∂ + X ( σ, τ), ∂ + ′ X ( σ′ , τ)] = ⎢ αme<br />

⎣ 2 m=−∞<br />

µ ν µ − im(<br />

τ+ σ)<br />

<br />

=<br />

2<br />

m=−∞<br />

(4.6)<br />

µ − im(<br />

τ+ σ)<br />

(4.7)<br />

p . Now let’s calculate the left-hand side<br />

<br />

2<br />

s<br />

∑ , ∑<br />

∞<br />

m=−∞<br />

α e<br />

ν − im(<br />

τ+ σ′<br />

)<br />

m<br />

2<br />

s<br />

∞<br />

∑<br />

−im<br />

( + n)<br />

τ − im ( σ+ nσ<br />

′ ) µ ν<br />

e e ⎡⎣ αm, αm⎤⎦<br />

mn , =−∞<br />

But, this must be proportional to ( ∂∂ / σδσ ) ( − σ ′ ) , and furthermore, the term on the<br />

right-hand side of Eq. (4.3) does not depend on τ. So, we have to remove the τ<br />

dependence. We can do so by noting that<br />

− im ( + n)τ<br />

e → 1 when m=−n We will be able to enforce this condition by introducing the Kronecker delta<br />

term δm+ n,<br />

0 , which is 1 when m=−nand 0 otherwise. Furthermore, we take note of<br />

the following expression for the Dirac delta function:<br />

Notice that<br />

1<br />

δσ ( − σ′<br />

) =<br />

2π<br />

∂<br />

i<br />

δσ ( − σ′<br />

) =−<br />

∂σ<br />

2π<br />

∞<br />

− ( σ− σ′<br />

)<br />

∑ e<br />

=−∞<br />

im<br />

m<br />

∞<br />

− ( σ− σ′<br />

)<br />

∑ me<br />

=−∞<br />

im<br />

m<br />

⎤<br />

⎥<br />

⎦<br />

(4.8)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!