02.06.2013 Views

String Theory Demystified

String Theory Demystified

String Theory Demystified

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

CHAPTER 2 Equations of Motion 35<br />

Similarly,<br />

σ µ<br />

P X P X X<br />

µ<br />

µ<br />

σ δ<br />

∂<br />

= δ δ<br />

∂ σ<br />

∂<br />

( )−<br />

∂<br />

∂P<br />

σ µ µ<br />

σ<br />

µ<br />

∂σ<br />

This means that the variation of the action can be written as<br />

τ<br />

τ<br />

τ µ µ µ<br />

δS T dτ dσ P δX δX<br />

τ<br />

µ<br />

τ<br />

τ<br />

P<br />

f ⎡ ∂<br />

∂ ⎤<br />

=− ∫ ∫ ⎢ ( )− ⎥<br />

i 0<br />

⎣⎢<br />

∂ ∂<br />

⎦⎥<br />

⎡ ∂<br />

∂<br />

− T∫ d ∫ d ⎢ ( P X )−X<br />

⎣⎢<br />

∂ ∂<br />

P<br />

σ<br />

τ f <br />

⎤<br />

σ µ µ µ<br />

τ σ δ δ<br />

τ<br />

µ<br />

⎥<br />

i 0 σ<br />

σ<br />

⎦⎥<br />

Recall from classical mechanics that a variation is defi ned such that variation at<br />

the endpoints is 0, that is, at the initial and fi nal times δ µ<br />

X = 0. In the case of the<br />

endpoints of the string, we can apply either Neumann or Dirichlet boundary<br />

conditions so we will have to handle each case differently (more on this as we go<br />

along). For now, let’s take δ µ<br />

X = 0 for simplicity. This means that we can throw<br />

away the terms in the above expression which are integrals of total derivatives:<br />

τ f<br />

τ i<br />

This leaves us with<br />

∂ τ µ<br />

∂ σ µ<br />

dτ( P δX dσ P δX<br />

µ )= 0 ( µ )= 0<br />

∂ τ<br />

0 ∂ σ<br />

∫ ∫<br />

τ<br />

τ ⎛ ∂ ⎞<br />

µ µ<br />

τ<br />

0 = δS = T∫ dτ∫ dσ⎜δX ⎟ +<br />

0<br />

⎝ ∂τ<br />

∫ τ<br />

τ<br />

τ<br />

⎠<br />

P<br />

σ<br />

f <br />

f ⎛ ∂ ⎞<br />

µ µ<br />

T d ∫ dσσ⎜δX<br />

⎟<br />

i<br />

i 0<br />

⎝ ∂σ<br />

⎠<br />

P<br />

τ<br />

∫ ∫<br />

f<br />

= T dτ dσδX τi<br />

<br />

0<br />

µ<br />

τ<br />

∂Pµ<br />

+<br />

∂τ<br />

∂<br />

σ ⎛ P ⎞ µ<br />

⎜ ⎟<br />

⎝ ∂σ<br />

⎠<br />

This gives us the equation of motion for the string, derived from the Nambu-Goto<br />

action:<br />

τ σ<br />

∂P<br />

∂P<br />

µ µ<br />

+ = 0 (2.26)<br />

∂ τ ∂σ

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!