28.12.2013 Views

Studies in Rings generalised Unique Factorisation Rings

Studies in Rings generalised Unique Factorisation Rings

Studies in Rings generalised Unique Factorisation Rings

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

-36-<br />

(3) We give an example of a GUFR which is neither a<br />

cornmu t a t i.ve Noetherian doma<strong>in</strong> nor a<br />

f'JUFR.<br />

k 2<br />

Let k be a field and T = k[x1... x ]. Let 1= L x. T<br />

n .11<br />

J.=<br />

k<br />

where k $ n. Set R = T/l, then P = ~ x.R is the unique<br />

.1 1 l=<br />

m<strong>in</strong>imal prime ideal of R, where ~.<br />

= x.+I for i=1,2,o •• ,k.<br />

1 1<br />

Localise R at P and let the localised r<strong>in</strong>g be Rp. Now<br />

it is easy to see that Rp is an over-r<strong>in</strong>g of R and<br />

that<br />

P conta<strong>in</strong>s no f~p-<strong>in</strong>vertible pr<strong>in</strong>cipal .idea l s , B\Jt every<br />

non-m<strong>in</strong>imal prime ideal of R strictly conta<strong>in</strong>s P and thus<br />

conta<strong>in</strong>s elements of the complement of P, i .n. ~ units<br />

<strong>in</strong> Rp' which<br />

<strong>in</strong> turn lead to Rp-<strong>in</strong>vertible pr<strong>in</strong>cipal<br />

ideals <strong>in</strong> non-m<strong>in</strong>imal prime ideal. Thus R is a commutative<br />

GUFR.<br />

S<strong>in</strong>ce R can be embedded <strong>in</strong> Rp' M 2(R)<br />

~an be embedded<br />

<strong>in</strong> M 2(R p)' Because of the order preserv<strong>in</strong>g bijection<br />

between the nrime ideals of R and that of M 2(R),<br />

M 2(P)<br />

is the unique m<strong>in</strong>imal prime ideal of M 2(R).<br />

None of the<br />

elements of ~(P) is <strong>in</strong>vertibl.e <strong>in</strong> M 2(R p)' therefore<br />

M 2(P)<br />

conta<strong>in</strong>s no M 2(R p)-<strong>in</strong>vertible normal ideah.<br />

Let N be a non-m<strong>in</strong>imal prime ideal of M 2(R),<br />

then<br />

N ~ M 2(P). Let N = N2(Q), where Q is a prime ideal of R.<br />

Then Q I=.P a nd hence there exists at least one element fa·<br />

-<strong>in</strong> Q such that a ~ ·P. Then the scalar matrix X with non zero

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!