23.01.2014 Views

Modelling Dependence with Copulas - IFOR

Modelling Dependence with Copulas - IFOR

Modelling Dependence with Copulas - IFOR

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

7.2 Multivariate Extreme Value Theory<br />

and hence F 1 (x) =1− exp(−(λ 1 + λ 12 )x) andF 2 (x) =1− exp(−(λ 2 + λ 12 )x). It<br />

follows that F 1 ,F 2 ∈ MDA(Λ). With the notation used in Theorem 7.2 we have<br />

r 1 (t) =F 1(t)/F ′ 1 (t) =(λ 1 + λ 12 )exp(−(λ 1 + λ 12 )t)/ exp(−(λ 1 + λ 12 )t)<br />

= λ 1 + λ 12 ,<br />

r 2 (t) =...= λ 2 + λ 12 ,<br />

−1<br />

φ 2 (t) =F 2 (F1 (t)) = − 1<br />

λ 2+λ 12<br />

ln e −(λ1+λ12)t = λ1+λ12<br />

λ 2+λ 12<br />

t,<br />

x 0 1 =sup{x : F 1 (x) < 1} = ∞.<br />

Furthermore<br />

F (x 1 ,x 2 )=F (x 1 ,x 2 )+F 1 (x 1 )+F 2 (x 2 ) − 1,<br />

1 − F (x 1 ,x 2 )=F 1 (x 1 )+F 2 (x 2 ) − F (x 1 ,x 2 )<br />

= {F (x 1 ,x 2 )=F 1 (x 1 )F 1 (x 1 )exp(λ 12 min(x 1 ,x 2 ))}<br />

= F 1 (x 1 )+F 2 (x 2 ) − F 1 (x 1 )F 2 (x 2 )exp(λ 12 min(x 1 ,x 2 )).<br />

Hence<br />

where<br />

1 − F<br />

(<br />

x1+(λ 1+λ 12)t<br />

)<br />

, x2+(λ1+λ12)t<br />

λ 2+λ 12<br />

1 − F 1 (x 1 )<br />

λ 1+λ 12<br />

= e −x1 + e −x2 − e −x1−x2 h(t),<br />

h(t) =exp(min(−λ 1 t + λ 12x 1<br />

λ 1 + λ 12<br />

, −λ 1 t − λ 12 t + λ 12x 2<br />

λ 2 + λ 12<br />

+ λ 12<br />

λ 1 + λ 12 t<br />

λ 2 + λ 12<br />

t)).<br />

Hence the right side of equation (7.2.6) is<br />

e −x1 + e −x2 − e −x1−x2 lim h(t).<br />

t→∞<br />

Consider the case when max(λ 1 ,λ 2 ) > 0. Then lim t→∞ h(t) = 0. From Theorem<br />

7.2 it follows that<br />

− ln G(x 1 ,x 2 ) = e −x1 + e −x2 =⇒<br />

G(x 1 ,x 2 ) = exp(−e −x1 − e −x2 )=Π(e −e−x 1<br />

,e −e−x 2<br />

).<br />

Consider the case when λ 1 = λ 2 =0,λ 12 > 0. Then lim t→∞ h(t) =exp(min(x 1 ,x 2 )).<br />

From Theorem 7.2 it follows that<br />

− ln G(x 1 ,x 2 ) = e −x1 + e −x2 − e −x1−x2+min(x1,x2)<br />

= e −x1 + e −x2 − e − max(x1,x2)<br />

= e −x1 + e −x2 − e min(−x1,−x2)<br />

= e −x1 + e −x2 − min(e −x1 ,e −x2 )<br />

= max(e −x1 ,e −x2 ) =⇒<br />

G(x 1 ,x 2 ) = exp(− max(e −x1 ,e −x2 ))<br />

= exp(min(−e −x1 , −e −x2 ))<br />

= min(e −e−x 1<br />

,e −e−x 2<br />

)<br />

= M(e −e−x 1<br />

,e −e−x 2<br />

).<br />

Thus F ∈ MDA(G) whereG is given by<br />

{<br />

G(x 1 ,x 2 )=<br />

Π(e −e−x 1<br />

,e −e−x 2<br />

) max(λ 1 ,λ 2 ) > 0<br />

,e −e−x 2<br />

) λ 1 = λ 2 =0,λ 12 > 0<br />

M(e −e−x 1<br />

This shows that bivariate vectors <strong>with</strong> a Marshall-Olkin copula gives perfect positive<br />

dependence or independence in the limit for componentwise maxima, depending on<br />

the parameterization of the copula.<br />

57

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!