23.01.2014 Views

Modelling Dependence with Copulas - IFOR

Modelling Dependence with Copulas - IFOR

Modelling Dependence with Copulas - IFOR

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

8 Mixture of Extremal Distributions<br />

To clarify the last step:<br />

(a 1 1 (x),a1 2 (x),a1 3 (x)) = (x, x, x),<br />

(a 2 1 (x),a2 2 (x),a2 3 (x)) = (x, x, 1 − x),<br />

(a 3 1(x),a 3 2(x),a 3 3(x)) = (x, 1 − x, x),<br />

(a 4 1 (x),a4 2 (x),a4 3 (x)) = (x, 1 − x, 1 − x).<br />

The algorithm can be explained in the following way: Pick one of the 2 n−1 extremal<br />

copulas, where the kth extremal copula is picked <strong>with</strong> probability λ k . Generate a<br />

random variate from this copula.<br />

To clarify the results obtained so far consider the following example.<br />

Example 8.2. Consider the problem of simulating from an extremal copula <strong>with</strong><br />

rank correlation matrix, ρ, givenby<br />

⎛<br />

⎞<br />

1 0.3 0.2<br />

⎝ 0.3 1 0.4 ⎠ .<br />

0.2 0.4 1<br />

First of all we need to find a convex decomposition of ρ in the class of extremal<br />

rank correlation matrices. That is, we need to find an nonnegative solution to the<br />

equation system<br />

4∑<br />

λ j ρ 3 j − ρ =0,<br />

where<br />

j=1<br />

4∑<br />

λ j − 1=0,<br />

j=1<br />

⎛<br />

ρ 3 1 = ⎝ 1 1 1 ⎞ ⎛<br />

1 1 1 ⎠ ,ρ 3 2 = ⎝ 1 1 −1 ⎞<br />

1 1 −1 ⎠ ,<br />

1 1 1<br />

−1 −1 1<br />

⎛<br />

ρ 3 3 = ⎝ 1 −1 1 ⎞ ⎛<br />

−1 1 −1 ⎠ ,ρ 3 4 = ⎝<br />

1 −1 1<br />

This equation system can be written<br />

⎛<br />

⎞ ⎛ ⎞ ⎛<br />

1 1 −1 −1 λ 1<br />

⎜ 1 −1 1 −1<br />

⎟ ⎜ λ 2<br />

⎟<br />

⎝ 1 −1 −1 1 ⎠ ⎝ λ 3<br />

⎠ = ⎜<br />

⎝<br />

1 1 1 1 λ 4<br />

Solving the equation system yields<br />

1 −1 −1<br />

−1 1 1<br />

−1 1 1<br />

0.3<br />

0.2<br />

0.4<br />

1<br />

⎞<br />

⎟<br />

⎠ .<br />

λ 1 =0.425,λ 2 =0.225,λ 3 =0.175,λ 4 =0.175.<br />

⎞<br />

⎠ .<br />

From Theorem 8.3 it is clear that the resulting copula, C, isgivenby<br />

C(u 1 ,u 2 ,u 3 ) = 0.425 min(u 1 ,u 2 ,u 3 )+<br />

0.225 max(min(u 1 ,u 2 )+u 3 − 1, 0) +<br />

0.175 max(min(u 1 ,u 3 )+u 2 − 1, 0) +<br />

0.175 max(u 1 + min(u 2 ,u 3 ) − 1, 0).<br />

To simulate from this copula we simply apply Algorithm 7. To clarify we show an<br />

example of how this algorithm produces one random variate.<br />

64

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!