13.07.2015 Views

[tel-00726959, v1] Caractériser le milieu interstellaire ... - HAL - INRIA

[tel-00726959, v1] Caractériser le milieu interstellaire ... - HAL - INRIA

[tel-00726959, v1] Caractériser le milieu interstellaire ... - HAL - INRIA

SHOW MORE
SHOW LESS
  • No tags were found...

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

IRAM Memo 2009-1IRAM-30m EMIR time/sensitivity estimatorJ. Pety 1,2 , S. Bardeau 1 , E. Reynier 11. IRAM (Grenob<strong>le</strong>)2. Observatoire de ParisFeb, 18th 2010Version 1.1AbstractThis memo describes the equations used in the IRAM-30m EMIR time/sensitivity estimator availab<strong>le</strong>in the GILDAS/ASTRO program. A large part of the memo aims at deriving sensitivity estimate forthe case of On-The-Fly observations, which is not c<strong>le</strong>arly documented elsewhere (to our know<strong>le</strong>dge).Numerical values of the different parameters used in the time/sensitivity estimator are grouped inappendix A.History:Version 1.0 (Feb, 04th 2009).Version 1.1 (Feb, 18th 2010) Simplified.<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012IRAM-30m EMIR time/sensitivity estimatorContentsContents1 Generalities 31.1 The radiometer equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31.2 System temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31.3 Elapsed <strong>tel</strong>escope time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31.4 The number of polarizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41.5 Switching modes and observation kinds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Tracked observations 42.1 Frequency switched . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42.2 Position switched . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52.3 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 On-The-Fly observations 53.1 Additional notions and notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53.2 Frequency switched . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63.3 Position switched . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63.3.1 Two key points: 1) Sharing OFF among many ONs and 2) system stability timesca<strong>le</strong> 63.3.2 Relation between tonoff and t beamsig . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73.3.3 Time/Sensitivity estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83.4 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 Acknow<strong>le</strong>dgement 10A Numerical values 11A.1 Overheads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11A.2 Atmosphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11A.3 Te<strong>le</strong>scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11A.4 Frontends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11A.5 Backends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11A.6 On-The-Fly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12B Optimal number of ON per OFF measurements 13IRAM-30m EMIR time/sensitivity estimator1 Generalities1.1 The radiometer equationThe radiometer equation for a total power measurement reads11. generalitiesTsysσ = √ , (1)ηspec dν twhere σ is the rms noise obtained by integration during t in a frequency resolution dν with a system whosesystem temperature is given by Tsys and spectrometer efficiency is ηspec. However, total power measurementincludes other contributions (e.g. the atmosphere emission) in addition to the astronomical signal. Theusual way to remove most of the unwanted contributions is to switch, i.e. to measure alternatively onsourceand off-source and then to subtract the off-source from the on-source measurements. It is easy toshow that the rms noise of the obtained measurement is√σ = σon 2 + σoff 2 = Tsyston toff√ with tsig = , (2)ηspec dν tsig ton + toffwhere σon and σoff are the noise of the on and off measurement observed respectively during the ton andtoff integration time. tsig is just a useful intermediate quantity.1.2 System temperatureThe system temperature is a summary of the noise added by the system. This noise comes from 1) thereceiver and the optics, 2) the emission of the sky, and 3) the emission picked up by the secondary sidelobes of the <strong>tel</strong>escope. It is usual to approximate it (in the Ta⋆ sca<strong>le</strong>) with(1 + Gim) exp {τs A}Tsys = [Feff Tatm (1 − exp {−τs A}) + (1 − Feff) Tcab + Trec] , (3)Feffwhere Gim is the receiver image gain, Feff the <strong>tel</strong>escope forward efficiency, A = 1/ sin(e<strong>le</strong>vation) theairmass, τs the atmospheric opacity in the signal band, Tatm the mean physical atmospheric temperature,Tcab the ambient temperature in the receiver cabine and Trec the noise equiva<strong>le</strong>nt temperature of thereceiver and the optics. All those parameters are easily measured, except τs, which is depends on theamount of water vapor in the atmosphere and which is estimated by comp<strong>le</strong>x atmospheric models.1.3 Elapsed <strong>tel</strong>escope timeThe goal of a time estimator is to find the elapsed <strong>tel</strong>escope time (t<strong>tel</strong>) needed to obtain a given rms noise,whi<strong>le</strong> a sensitivity estimator aims at finding the rms noise obtained when observing during t<strong>tel</strong>. If tonoff isthe total integration time spent both on the on-source and off-source observations, thentonoff = η<strong>tel</strong> t<strong>tel</strong>, (4)where η<strong>tel</strong> is the efficiency of the observing mode, i.e. the time needed 1) to do calibrations (e.g. pointing,focus, temperature sca<strong>le</strong> calibration), and 2) to s<strong>le</strong>w the <strong>tel</strong>escope between useful integrations.The tuning of the receivers is not proportional to the total integration time but it should be added tothe elapsed <strong>tel</strong>escope time. A time estimator can hardly anticipate the total tuning time for a project.Indeed, one project (e.g. faint line detection) can request only one tuning to be used during many hoursand another (e.g. line survey) can request a tuning every few minutes. In our case, we thus request thatthe estimator user add by hand the tuning time to the elapsed <strong>tel</strong>escope time estimation.23

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!