20.01.2013 Views

special - Alu-web.de

special - Alu-web.de

special - Alu-web.de

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

L I t E r A t U r E S E r v I C E<br />

Kombination von Konstruktion, Gießverfahren und Werkstoff<br />

gefor<strong>de</strong>rt. Untersuchungen zum Einsatz geeigneter Zylin<strong>de</strong>rkopflegierungen<br />

haben gezeigt, dass die Legierung allein die<br />

For<strong>de</strong>rungen nicht erfüllen kann. Ein funktionieren<strong>de</strong>s Bauteil<br />

erhält man nur durch geeignete Konstruktion und ein werkstoffgerechtes<br />

Herstellungsverfahren. Dies beinhaltet neben <strong>de</strong>m<br />

Gießen vor allem auch die Wärmebehandlung. Bei <strong>de</strong>n Bauteilfestigkeiten<br />

ist zu beobachten, dass die nominellen statischen<br />

Werte durch Eigenspannungen – z.B. aus <strong>de</strong>r Warmbehandlung<br />

– überlagert wer<strong>de</strong>n können. Dies kann dazu führen, dass das<br />

nominelle Potenzial <strong>de</strong>s Werkstoffs nicht immer genutzt wird.<br />

13 Abb., 3 Tab.<br />

ALUMINIUM 9 (2009) Anwendung<br />

R. A. P. Fielding<br />

homogenization of <strong>Alu</strong>minium Alloy Extrusion Billet<br />

Part iii: The Application of the Continuous<br />

homogenization Process to AA6xxx Series Alloys<br />

Light Metal Age, April 2009, S. 8-17<br />

The majority of AA6xxx extrusion alloy billets are homogenized<br />

in one of the 90 continuous furnaces manufactured by Hertwich<br />

Engineering since their first prototype was supplied to<br />

Amag in Austria in 1980. The advantages of this technology<br />

and issues specific to the <strong>de</strong>sign, operation and control of these<br />

furnaces are discussed. The productivity and, to a large <strong>de</strong>gree,<br />

the recovery from the extrusion of an aluminium alloy billet<br />

is <strong>de</strong>pen<strong>de</strong>nt on its thermal history from alloying and casting<br />

through homogenization until its entry to the extrusion die. As<br />

was pointed out by Reiso, an optimum billet structure for one<br />

extru<strong>de</strong>r may not be the optimum for another. Whether a prime<br />

or a secondary producer supplies the extrusion billet, variations<br />

in the chemical composition, the preparation of the melt,<br />

or the casting and homogenization processes, can be <strong>de</strong>tected<br />

at the extrusion press. Additionally, in the extrusion plant, the<br />

specific pressure of the presses and the <strong>de</strong>sign of the extrusion<br />

dies affect the choice of die, billet and container temperatures.<br />

The rate of heating the billet before entering the extrusion press<br />

varies between induction and gas-fired furnaces. All of these<br />

factors have an influence on the optimum billet structure. As a<br />

consequence, the production of extrusions, from molten metal<br />

to the age ovens, must be looked upon as a whole. What happens<br />

at one stage of the production process is not in<strong>de</strong>pen<strong>de</strong>nt of the<br />

other stages. 5 figures, 27 sources<br />

ALUMINIUM 9 (2009) Strangpressen<br />

J. C. LaBelle, T. Dolby<br />

hex Washer-head Fastener<br />

Pull-Over in Mo<strong>de</strong>rately Thin <strong>Alu</strong>minium<br />

Light Metal Age, April 2009, S. 40-43<br />

Pull-over, also termed pull-through, is a mo<strong>de</strong> of failure for a<br />

tension-loa<strong>de</strong>d fastener in which the sheet, plate or extrusion<br />

locally tears and/or <strong>de</strong>forms sufficiently to allow the head to<br />

pass completely through. Screws are used to resist tensile <strong>de</strong>sign<br />

loads in a variety of aluminium structures including skylights,<br />

curtain walls, and window framing. The <strong>Alu</strong>minium Design<br />

Manual (ADM) inclu<strong>de</strong>s equation 5.4.2.2-1 for pull-over of tapping<br />

screws installed in aluminium. This formula, however, was<br />

based on testing of relatively thin aluminium, 1.02 mm (0.040“)<br />

maximum, using hex-head fasteners with loose washers that<br />

were a metal/rubber combination. Subsequently, limited testing<br />

indicated that this equation was likely conservative for greater<br />

thicknesses. Thus, a testing programme was initiated in or<strong>de</strong>r to<br />

study behaviour and provi<strong>de</strong> <strong>de</strong>sign guidance for the pull-over<br />

mo<strong>de</strong> for hex-head screws with integral or loose metal-washers,<br />

and pan-head screws, installed in mo<strong>de</strong>rately thin aluminium.<br />

Thicknesses ranged from about 1.02 mm (0.040“) to 6.35 mm<br />

(0.25“). Testing covered a range of fastener-plate combinations<br />

(sets) including four screw diameters, five plate thicknesses, and<br />

several alloy-tempers. In total, 162 specimens were tested (Fig.<br />

1), usually with eight tests for each combination (set) of screw<br />

size, plate thickness, and alloy-temper. Pull-over occurred in all<br />

of the tests except for those with nominal 6.35 mm (1/4“) thick<br />

plates. In these tests, screw failure occurred.<br />

Data analysis inclu<strong>de</strong>d comparisons between test results and<br />

predicted (nominal) values based on the ADM. In all cases, the<br />

ADM pull-over prediction was substantially less than the test<br />

average for the new data. A simple <strong>de</strong>sign equation was <strong>de</strong>veloped<br />

to more accurately, yet conservatively, mo<strong>de</strong>l pull-over<br />

behaviour for screws installed in aluminium with a minimum<br />

thickness of 1.02 mm (0.040“) and prescribed hole sizes. 4 figures,<br />

5 tables, 7 sources.<br />

ALUMINIUM 9 (2009) Verarbeitung, erste Stufe<br />

Sh. Akhtar, G. Timelli, F. Bonollo, L. Arnberg, M. Di Sabatino<br />

A comparative study of <strong>de</strong>fects and mechanical properties in<br />

high pressure die cast and gravity die cast aluminium alloys<br />

International Foundry Research/Giessereiforschung 61 (2009)<br />

No. 2, S. 36-48<br />

Defects such as pores, hot tears, entrained oxi<strong>de</strong>s or macrosegregation<br />

may occur in aluminium die castings, impairing their<br />

mechanical properties. The nature, extent and distribution of<br />

such <strong>de</strong>fects will, however, differ between die casting processes.<br />

To investigate these differences, a comparative study between<br />

gravity castings of an A356 alloy and high pressure die castings<br />

of an A380 alloy was carried out. The <strong>de</strong>fect distributions of<br />

the castings were investigated by metallography, radiography<br />

and fractography, and the tensile properties were measured.<br />

The gravity die castings were produced in a step mould with<br />

and without filter and at different controlled hydrogen concentrations<br />

in the melt. The U-shaped pressure die castings were<br />

produced with systematic variations of process parameters<br />

such as plunger speed, commutation point between first and<br />

second phase and pouring temperature. It has been found that<br />

both castings contain <strong>de</strong>fects, primarily pores and oxi<strong>de</strong>s, and<br />

that the presence and distribution of these <strong>de</strong>fects are highly<br />

sensitive to the process conditions. Significant variations of the<br />

<strong>de</strong>fect distribution have, however, also been found in castings<br />

produced un<strong>de</strong>r the same conditions, particularly in the pressure<br />

die castings indicating the stochastic nature of <strong>de</strong>fects in<br />

die castings. The dominating <strong>de</strong>fect type in the gravity die casting<br />

is hydrogen porosity mainly at high hydrogen melt concentrations,<br />

whereas in the high pressure die castings, oxi<strong>de</strong>s and<br />

entrapped air porosity dominate. The tensile properties in both<br />

types of castings are affected by the amount and distribution of<br />

<strong>de</strong>fects. This effect is particularly prominent for the pressure<br />

die castings where the <strong>de</strong>fect area fraction has been found to<br />

<strong>de</strong>termine the tensile strength. In the gravity castings, hydrogen<br />

porosity <strong>de</strong>creases the tensile strength, but this effect becomes<br />

significant only at quite high hydrogen melt concentrations. The<br />

tensile properties as well as the porosity also <strong>de</strong>pen<strong>de</strong>d on the<br />

cross section of the castings. 26 figures, 4 tables, 27 sources<br />

ALUMINIUM 9 (2009) Formguss, Gusslegierungen<br />

Für Schrifttum zum Thema „<strong>Alu</strong>minium“ ist <strong>de</strong>r Gesamtverband <strong>de</strong>r <strong>Alu</strong>miniumindustrie e.V. (GDA)<br />

<strong>de</strong>r kompetente Ansprechpartner. Die hier referierten Beiträge repräsentieren lediglich einen Ausschnitt<br />

aus <strong>de</strong>m umfassen<strong>de</strong>n aktuellen Bestand <strong>de</strong>r GDA-Bibliothek.<br />

Die von <strong>de</strong>r <strong>Alu</strong>minium-Zentrale seit <strong>de</strong>n dreißiger Jahren kontinuierlich aufgebaute Fach-Bibliothek<br />

wird duch <strong>de</strong>n GDA weitergeführt, ausgebaut und auf die neuen Medien umgestellt. Sie steht allen<br />

interessenten offen.<br />

Ansprechpartner ist Dr. Karsten hein, E-Mail: karsten.hein@aluinfo.<strong>de</strong><br />

62 ALUMINIUM · 9/2009

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!