09.02.2013 Views

Cancer Research in Switzerland - Krebsliga Schweiz

Cancer Research in Switzerland - Krebsliga Schweiz

Cancer Research in Switzerland - Krebsliga Schweiz

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

104<br />

Janscak Pavel | Study of the role of mismatch repair<br />

prote<strong>in</strong>s <strong>in</strong> the cellular response to DNA double-strand<br />

breaks (KLS 02344­02­2009)<br />

Duration: 01.07.2009 – 01.07.2011<br />

DNA damage is a frequent event <strong>in</strong> the life of a cell. Failure<br />

to repair DNA damage can lead to cell death, and <strong>in</strong>accurate<br />

DNA repair can give rise to genomic <strong>in</strong>stability,<br />

which promotes the onset of cancer <strong>in</strong> mammals. The<br />

most deleterious form of DNA damage is DNA doublestrand<br />

break (DSB). In eukaryotic cells, two mechanistically<br />

dist<strong>in</strong>ct pathways are known to efficiently repair<br />

DSBs: non­homologous end jo<strong>in</strong><strong>in</strong>g and homologous recomb<strong>in</strong>ation.<br />

However, molecular mechanisms underly<strong>in</strong>g<br />

these DNA repair pathways are not completely understood.<br />

Our recent experiments with human cells revealed<br />

that prote<strong>in</strong>s <strong>in</strong>volved <strong>in</strong> the <strong>in</strong>itiation of post­replicative<br />

mismatch repair (MMR), such as MSH2, MSH3, MSH6<br />

and MLH1, accumulate at sites of chromosomal DSBs generated<br />

by UVA laser. Ongo<strong>in</strong>g research <strong>in</strong> our laboratory<br />

aims to ga<strong>in</strong> <strong>in</strong>sight <strong>in</strong>to the function of MMR prote<strong>in</strong>s at<br />

the sites of DNA damage <strong>in</strong> human cells.<br />

The project utilizes various cell biology methods <strong>in</strong> comb<strong>in</strong>ation<br />

with laser micro­dissection technology and immunofluorescence<br />

microscopy. Us<strong>in</strong>g RNA <strong>in</strong>terference, we<br />

<strong>in</strong>tend to identify the DNA repair factors that are required<br />

for the recruitment of MMR prote<strong>in</strong>s to the sites of DSBs.<br />

DNA repair capacity of cells depleted for the <strong>in</strong>dividual<br />

MMR prote<strong>in</strong>s will be assessed us<strong>in</strong>g chromosomallybased<br />

reporters for specific DSB repair pathways and by<br />

test<strong>in</strong>g sensitivity of depleted cells to DNA damag<strong>in</strong>g<br />

agents.<br />

Our prelim<strong>in</strong>ary data <strong>in</strong>dicate that the MMR prote<strong>in</strong>s accumulate<br />

at DSBs <strong>in</strong> a manner dependent on MRE11 and<br />

CtIP, which are <strong>in</strong>volved <strong>in</strong> the <strong>in</strong>itiation homologous recomb<strong>in</strong>ation.<br />

Germl<strong>in</strong>e mutations <strong>in</strong> the MLH1, MSH2 and MSH6 genes<br />

are the major cause of hereditary non­polyposis colon<br />

cancer. It is anticipated that our study will advance understand<strong>in</strong>g<br />

of the molecular events lead<strong>in</strong>g to this most<br />

common form of <strong>in</strong>herited colon cancer.<br />

Project coord<strong>in</strong>ator<br />

Dr. Pavel Janscak<br />

Institut für molekulare Krebsforschung<br />

Universität Zürich<br />

W<strong>in</strong>terthurerstrasse 190<br />

CH­8057 Zürich<br />

Phone +41 (0)44 635 34 70<br />

pjanscak@imcr.uzh.ch<br />

Krek Wilhelm | Roles of the URI oncoprote<strong>in</strong> <strong>in</strong><br />

B-RAF-signal<strong>in</strong>g and melanoma cancer cell proliferation<br />

(KFS 02690­08­2010)<br />

Duration: 01.02.2011 – 01.02.2013<br />

Malignant melanoma (“black sk<strong>in</strong> cancer”) is one of the<br />

most aggressive cancers. Prognosis for advanced stages is<br />

dismal due to a lack of efficient systemic therapies, with<br />

classical cytotoxic chemotherapy be<strong>in</strong>g particularly <strong>in</strong>efficient.<br />

Elucidat<strong>in</strong>g the molecular and cell biological bases of melanomagenesis<br />

is therefore of prime importance and has<br />

already led to f<strong>in</strong>d<strong>in</strong>gs that have been translated successfully<br />

to the cl<strong>in</strong>ics. A central player <strong>in</strong> melanomagenesis is<br />

BRAF V600E , which is a constitutively active mutant form of<br />

the BRAF k<strong>in</strong>ase, a component of the RAS/RAF/MEK/<br />

ERK­signal<strong>in</strong>g cascade. BRAF V600E is found <strong>in</strong> about 70 %<br />

of all melanomas, and mouse models demonstrated its<br />

oncogenic potential. Selective BRAF V600E <strong>in</strong>hibitors have<br />

been developed and their therapeutic efficiency <strong>in</strong> first<br />

cl<strong>in</strong>ical trials is promis<strong>in</strong>g. However, after some months<br />

cl<strong>in</strong>ical resistance develops, and therefore new therapeutic<br />

strategies are still very much needed. BRAF V600E provokes<br />

overactive RAS/RAF/MEK/ERK­signall<strong>in</strong>g lead<strong>in</strong>g<br />

to un con trolled cellular proliferation. Several mechanisms<br />

regulate the activity of this pathway at multiple levels.<br />

Particularly important <strong>in</strong> the negative regulation of pathway<br />

activity are negative feedback systems mediated by<br />

phosphatases that dampen overactive signall<strong>in</strong>g. That<br />

might also be one of the reasons why the BRAF V600E alone<br />

does not suffice for malignant transformation, but secondary<br />

changes (“second hits”) are a prerequisite.<br />

We recently discovered a novel phosphatase (PP)1­dependent<br />

negative feedback system that acts to restra<strong>in</strong><br />

S6K1 survival signall<strong>in</strong>g <strong>in</strong> response to nutrient and growth<br />

factor stimulation. Moreover, PP1 is a target of oncogenic<br />

alterations that disable PP1­mediated feedback <strong>in</strong>hibition<br />

on survival signall<strong>in</strong>g <strong>in</strong> different human cancers. In this<br />

project we are test<strong>in</strong>g whether this PP1­dependent feedback<br />

system also acts on the RAS/RAF/MEK/ERK pathway<br />

and is oncogenically targeted <strong>in</strong> human melanoma.<br />

In this work we are comb<strong>in</strong><strong>in</strong>g human tissue microarrays<br />

(TMA), quantitative phosphoproteome analyses, RNA<br />

<strong>in</strong>terference and mouse models of melanomagenesis.<br />

From these studies, we expect to discover novel regulatory<br />

mechanisms of oncogenic BRAF V600E signall<strong>in</strong>g and of<br />

RAS/RAF/MEK/ERK­signall<strong>in</strong>g <strong>in</strong> general.<br />

Project coord<strong>in</strong>ator<br />

Prof. Dr. Wilhelm Krek<br />

Institut für Zellbiologie<br />

ETH Zürich<br />

HPM F42<br />

Schafmattstrasse 18<br />

CH­8093 Zürich<br />

Phone +41 (0)44 633 34 47<br />

Fax +41 (0)44 633 13 57<br />

wilhelm.krek@cell.biol.ethz.ch

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!