01.02.2013 Views

6 folier pr. side - NTNU

6 folier pr. side - NTNU

6 folier pr. side - NTNU

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>NTNU</strong><br />

<strong>NTNU</strong><br />

<strong>NTNU</strong><br />

Slide 277<br />

Slide 279<br />

Slide 281<br />

■ Denne ble utledet i kapittel 4:<br />

U dc ( t)<br />

U sa ( t)<br />

= ⋅ u sta ( t − Tv<br />

)<br />

2<br />

U dc ( t)<br />

U sc ( t)<br />

= ⋅ u stc ( t − Tv<br />

)<br />

2<br />

■ Pu-modell:<br />

1<br />

u sa ( t)<br />

= �u<br />

�dc<br />

⋅ u dc ( t)<br />

⋅ u sta ( t − Tv<br />

)<br />

2<br />

1<br />

u sc ( t)<br />

= �u<br />

� dc ⋅ u dc ( t)<br />

⋅ u stc ( t − Tv<br />

)<br />

2<br />

U dn<br />

�u<br />

�dc<br />

=<br />

Û n<br />

■ Pu-modell:<br />

Middelverdi-modell<br />

U dc ( t)<br />

U sb ( t)<br />

= ⋅ u stb ( t − Tv<br />

)<br />

2<br />

hvor Tv<br />

= Tsw<br />

/ 2<br />

1<br />

u sb ( t)<br />

= �u<br />

�dc<br />

⋅ u dc ( t)<br />

⋅ u stb ( t − Tv<br />

)<br />

2<br />

hvor Tv<br />

= Tsw<br />

/ 2<br />

PU-modell basert på svitsjetilstander<br />

1<br />

u sa ( t)<br />

= �u<br />

� dc ⋅ u dc ( t)<br />

3<br />

1<br />

u sb ( t)<br />

= �u<br />

�dc<br />

⋅ u dc ( t)<br />

3<br />

1<br />

u sc ( t)<br />

= �u<br />

� dc ⋅ u dc ( t)<br />

3<br />

⋅ ( 2 ⋅ d − d − d )<br />

⋅ ( 2 ⋅ d − d − d )<br />

⋅ ( 2 ⋅ d − d − d )<br />

■ Valg av basis-verdier basert på sammen basiseffekt i<br />

mellomkretsen som i motoren S n :<br />

U dn<br />

�u<br />

�dc<br />

= = 2 ⇒ U dn = 2 ⋅ Û n<br />

Û n<br />

3 În<br />

3<br />

U dn ⋅ Idn<br />

= 3/<br />

2 ⋅ Û n ⋅ Î n ⇒ Idn<br />

= = Î n<br />

2 �u<br />

�dc<br />

4<br />

au<br />

bu<br />

cu<br />

bu<br />

cu<br />

au<br />

cu<br />

au<br />

bu<br />

U dn<br />

u�<br />

� dc =<br />

Û n<br />

Mulige statorspennings romvektor…..<br />

s 2<br />

u s = ⋅ �u<br />

�dc<br />

⋅ u dc ⋅ e(<br />

t)<br />

3<br />

( ) ⎥ 1 ⎡2<br />

⋅ d au − d bu − d cu ⎤<br />

e(<br />

t)<br />

= ⋅ ⎢<br />

2 ⎣ 3 ⋅ d bu − d cu ⎦<br />

⎡2 u ν = ⎢ ⋅ �u<br />

�dc<br />

⋅ u dc<br />

⎣3<br />

π(<br />

ν -1)<br />

⎤<br />

,<br />

3<br />

⎥<br />

⎦<br />

for ν = 1,........ , 6<br />

u<br />

T<br />

= [ 0 , 0]<br />

for ν = 0,7<br />

ν<br />

T<br />

Trondheim 2000<br />

Trondheim 2000<br />

Trondheim 2000<br />

<strong>NTNU</strong><br />

<strong>NTNU</strong><br />

<strong>NTNU</strong><br />

Slide 278<br />

Slide 280<br />

Slide 282<br />

Modell basert på svitsjetilstander<br />

■ Modell basert på svitsjetilstander:<br />

1<br />

Usa<br />

( t)<br />

= ⋅ ( 2 ⋅ U a0<br />

( t)<br />

− U b0<br />

( t)<br />

− U c0<br />

( t)<br />

)<br />

3<br />

1<br />

Usb<br />

( t)<br />

= ⋅ ( 2 ⋅ U b0<br />

( t)<br />

− U c0<br />

( t)<br />

− U a 0 ( t)<br />

)<br />

3<br />

1<br />

Usc<br />

( t)<br />

= ⋅ ( 2 ⋅ U c0<br />

( t)<br />

− U a 0 ( t)<br />

− U b0<br />

( t)<br />

)<br />

3<br />

Up<br />

Um<br />

U a0<br />

( t)<br />

= U dc ( t)<br />

⋅ d au U b0<br />

( t)<br />

= U dc ( t)<br />

⋅ d bu U c0<br />

( t)<br />

= U dc ( t)<br />

⋅ d cu<br />

ÃÃÃÃÃÃ�Ã�����Ã<br />

���������������<br />

v Enable<br />

Udc+<br />

Udc-<br />

c1<br />

sw1_l4<br />

sw1_l4<br />

pwld<br />

sw1_l4<br />

pwld sw1_l4<br />

Udc<br />

( t)<br />

Usa<br />

( t)<br />

= ⋅ ( 2 ⋅ d au − d bu − d cu )<br />

3<br />

U dc ( t)<br />

Usb<br />

( t)<br />

= ⋅ ( 2 ⋅ d bu − d cu − d au )<br />

3<br />

U dc ( t)<br />

Usc<br />

( t)<br />

= ⋅ ( 2 ⋅ d cu − d au − d bu )<br />

3<br />

Sammenhengen mellom svitsjetilstander og<br />

statorspennings romvektor<br />

■ Pu-modell:<br />

1<br />

u sa ( t)<br />

= �u<br />

� dc ⋅ u dc ( t)<br />

3<br />

1<br />

u sb ( t)<br />

= �u<br />

� dc ⋅ u dc ( t)<br />

3<br />

1<br />

u sc ( t)<br />

= �u<br />

� dc ⋅ u dc ( t)<br />

3<br />

■ Settes inn i Park-transformasjonen med θ k=0:<br />

s ⎡2<br />

/ 3<br />

u s = ⎢<br />

⎣ 0<br />

s<br />

u sα<br />

= u sa<br />

pwld<br />

pwld<br />

⋅ ( 2 ⋅ d − d − d )<br />

au<br />

⋅ ( 2 ⋅ d − d − d )<br />

bu<br />

⋅ ( 2 ⋅ d − d − d )<br />

cu<br />

bu<br />

cu<br />

au<br />

−1<br />

/ 3 − 1/<br />

3 ⎤ S<br />

⋅ u s<br />

1/<br />

3 −1<br />

/ 3<br />

⎥<br />

⎦<br />

cu<br />

au<br />

bu<br />

sw1_l4<br />

sw1_l4<br />

pwld<br />

pwld<br />

U dn<br />

�u<br />

� dc =<br />

Û n<br />

S<br />

T<br />

u s = [ u u u ]<br />

sa<br />

sb<br />

Trondheim 2000<br />

s 1<br />

2 ⋅ u sb + u sa<br />

u sβ<br />

= ⋅ ( u sa − u sc ) =<br />

3<br />

3<br />

Spenningspådraget må være i statororienterte<br />

koordinater<br />

■ Arbeider regulatoren i dq-systemet eller et annet roterende<br />

koordinatsystem må pådraget transformeres til<br />

statorkoordianter:<br />

➨ Den fysiske omformer er koblet til de fysiske viklinger i<br />

stator<br />

■ Transformasjonen i kartesiske eller polare koordinater:<br />

k k s<br />

u st = �ss<br />

⋅ u st<br />

k ⎡ cos θ k sin θ k ⎤<br />

�ss<br />

= ⎢<br />

⎥<br />

⎣−<br />

sin θ k cos θ k ⎦<br />

s −k<br />

k<br />

u st = �ss<br />

⋅ u st<br />

−k<br />

⎡cos<br />

θk<br />

− sin θk<br />

⎤<br />

�ss<br />

= ⎢<br />

⎥<br />

⎣sin<br />

θk<br />

cos θk<br />

⎦<br />

sc<br />

Trondheim 2000<br />

Trondheim 2000

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!